期刊文献+

基于SVM变压器故障诊断的基本信度分配函数确定方法

Determining method for reliability distribution function of transformer fault diagnosis based on SVM
下载PDF
导出
摘要 针对变压器故障诊断油中溶解气体的故障样本较少以及特征气体与变压器故障之间建立的非线性分类关系存在着一定的不确定性问题,提出了一种基于SVM和D-S证据理论多证据体相融合的故障诊断新方法。首先,将SVM的标准输出直接拟合Sigmoid函数得到SVM输出结果,然后,将其进行信息融合。在Visual Studio2008环境结合LIBSVM软件包对DGA数据进行试验,结果表明,该方法在变压器故障诊断中取得了较高的正判率,同时诊断输出结果包含更多信息量。 Aiming at the lack of enough oil dissolved gas samples in transformer fault diagnosis and the uncertainty of nonlinear classification relationship established between the characteristic gas and transformer failures, a new fault diagnosis method based on evidence of bulk integration of SVM and D - S evidence theory is supported. First, the standard output of the SVM directly fits with the Sigmoid function, from which the SVM output of posterior probability is acquired, and then more SVM output is used to information fusion. With the help of LIBSVM software package the DGA data is tested under Visual Studio 2008. The experimental results show that the method that is applied to transformer fault diagnosis obtains higher accuracy and diagnostic result with more information
出处 《黑龙江电力》 CAS 2013年第2期124-126,129,共4页 Heilongjiang Electric Power
关键词 变压器 故障诊断 证据理论 信息融合 transformer fault diagnosis evidence theory information fusion
  • 相关文献

参考文献4

二级参考文献22

  • 1电力工业设备诊断技术专业协会.变压器故障诊断典型案例汇编(续1).中国电力企业管理,1994,.
  • 2电力工业设备诊断技术专业协会.变压器故障诊断典型案例汇编.中国电力企业管理,1994,.
  • 3V Vapnik. The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, 1995
  • 4L Bottou, C Cortes, J Denker, et al. Comparison of classifier methods: A case study in handwriting digit recognition [C]. The 12th IAPR Int'l Conf on Pattern Recognition, Jerusalem, Israel, 1994
  • 5S Knerr, L Personnaz, G Dreyfus. Single-layer learning revisited : A stepwise procedure for building and training a neural network [C]. In: Neurocomputing: Algorithms, Architectures and Application, F68 of NATO ASI Series. Berlin: Springer, 1990. 41-50
  • 6H C Kim, S N Pang, H M He, et al. Constructing support vector machine ensemble [J]. Pattern Recognition, 2003, 36 (12) : 2757-2767
  • 7C W Hsu, C J Lin. A comparison of methods for multi-class support vector machines [J]. IEEE Trans on Neural Networks, 2002, 13(2): 415-425
  • 8L K Hansen, P Salamon. Neural network ensembles [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12 (10) : 993-1001
  • 9R E Schapire. The strength of weak learnability [J]. Machine Learning, 1990, 5(2): 197-227
  • 10L Xu, A Krzyzak, C Y Suen. Methods of combining multiple classifiers and their applications to handwriting recognition [J]. IEEE Trans on Systems, Man and Cybernetics, 1992, 27(3) : 418-435

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部