期刊文献+

基于局部随机化哈达玛矩阵的正交多匹配追踪算法 被引量:5

Orthogonal multi matching pursuit algorithm based on local randomized Hadamard matrix
下载PDF
导出
摘要 针对现有测量矩阵的优缺点,采用具有良好相关性、随机独立性及快速计算的局部随机化哈达玛矩阵作为测量矩阵,同时针对标准正交匹配追踪算法在测量过程中受扰或在稀疏信号情况下难以稳定精确重构问题,提出了一种基于局部随机化哈达玛矩阵的正交多匹配追踪算法。该算法利用局部随机化哈达玛矩阵的结构特性,能够快速精确重构原信号。仿真结果表明,测量过程中存在噪声或无噪,无论处理一维信号还是二维图像信号时,该算法性能均超过同类其他贪婪算法和凸优化基匹配法。 According to advantages and drawbacks of existing measurement matrixes, a local randomized Hadamard matrix is adopted, which has high eorrelativity, stochastic independence and fast computation capa- bility. Meanwhile, according to the question which is hard to reconstruct stably original signals for the standard orthogonal matching pursuit (OMP) algorithm when the samples are compressible signals or are contaminated with noises, a novel orthogonal multimatching pursuit algorithm based on local randomized Hadamard matrix is proposed. The proposed algorithm can precisely reconstruct signals by using the special structural features of the local randomized Hadamard matrix. The simulation results of one dimensional signals and real image show that the proposed algorithm is superior to other greedy algorithms and convex basis pursuit(BP) method no mat- ter whether the samples are contaminated with noise or not.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第5期914-919,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61162007) 广西研究生教育创新计划(2011105950810M11)资助课题
关键词 压缩感知 重构算法 正交匹配追踪 compressed sensing (CS) reconstruction algorithm orthogonal matching pursuit(OMP)
  • 相关文献

参考文献17

  • 1Donoho D L. Compressed sensing[J]. IEEE Trans. on In formarion Theory,2006, 52(4) :1289 - 1306.
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. on Information Theory, 2006, 52 (2) :489 - 509.
  • 3Duarte M F, Eldar Y C. Structured compressed sensing[J]. IEEE Trans. on Signal Processing Theory, 2011,59(9) :4053 - 4085.
  • 4Tropp J, Gilert A. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans. on Informa tion Theory, 2007, 53(12) :4655 - 4666.
  • 5Needel D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topicsin Signal Processing Theory,2010,4(2) :310 - 316.
  • 6Blumensath T. Stagewise weak gradient pursuits[J]. IEEE Trans. on Signal Processing, 2009,57(11) :4333 -4346.
  • 7Needell D, Troop J A. CoSaMP:iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3) :301 - 321.
  • 8Donoho D L. On the stability of the basis pursuit in the presence of noise[J]. Signal Processing, 2006,83 (6) : 511 - 532.
  • 9Figuerredo M A T,Nowak R D,Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse prohlems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4) :586 - 597.
  • 10Davenport M A. Analysis of orthogonal matching pursuit using the restricted isometry property[J]. IEEE Trans. on Information Theory, 2010,56(9) :4395 - 4401.

二级参考文献16

  • 1Candes E J. Compressive sampling[C] // Proc. of the International Congress of Mathematicians, 2006 : 1433 - 1452.
  • 2Donoho D L. Compressed sensing[J]. IEEE Trans. on Information Theory, 2006,52(4) : 1289 - 1306.
  • 3Zymnis A, Boyd S, Candes E. Compressed sensing with quantized measurements[J].IEEE Signal Processing Letters,2010, 17(2) :149- 152.
  • 4Mohammadi R, Mahloojifar A. Resolution improvement of scanning acoustic microscopy using sparse signal representation[J]. Journal of Signal Processing Systems, 2009,54 (1) : 15 - 24.
  • 5Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Founda tions of Computational Mathematics, 2009,9 (3) 317 - 334.
  • 6Qu X, Cao X, Guo D, et al. Combined sparsifying transforms for compressed sensing MRI[J]. Electronics Letters, 2010, 46 (2) :121 - 123.
  • 7Berger C R, Zhou S L, Preisig J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing[J]. IEEE Trans. on Signal Processing, 2010 58(3) : 1708 - 1721.
  • 8Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [J]. Foundations of Computational Mathematics, 2008,9 (3) : 317 - aa4.
  • 9Candes E J, Wakin M. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008,25 (2) : 1 - 30.
  • 10Zymnis A, Boyd S, Candes E. Compressed sensing with quantized measurements [J]. IEEE Signal Processing Letters, 2010,17(2) :149 - 152.

共引文献4

同被引文献23

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部