期刊文献+

基于混合非线性偏微分方程扩散的可逆图像放大 被引量:5

Reversible image interpolation based on hybrid anisotropic partial differential equation diffusion
下载PDF
导出
摘要 综合应用冲激滤波器、改进的前向后向(forward and backward,FAB)扩散滤波器和全变差(total-variation,TV)扩散算法,提出一种双正交映射约束的混合偏微分方程扩散图像放大算法。改进的FAB滤波器能够很好地增强图像的小边缘,参数约束的冲激滤波器可增强图像的强边缘,基于水平集方法实现的TV扩散可以消除边缘的锯齿波,使边缘光滑,所提算法综合以上优点。利用退化模型的低通滤波器的双正交滤波器得到一个空域双正交映射,放大图像完全满足退化模型,使放大图像对于退化模型可逆。仿真实验表明,与其他算法相比,所提算法有较好的性能,得到的放大图像更加自然,在弱边缘和中等强度边缘都有更好的视觉效果。 Combined the improved forward-and-backward (FAB) diffusion and total-variation (TV) diffu- sion coupled to the parameter constrained shock filters under the projection of the bi-orthogonaI filter, a new hy- brid diffusion method of image enlargement is proposed. The improved FAB diffusion enhances weak edges, the shock filter constrained by adaptive coefficient enhances the strong edge and TV diffusion based on the level-set method smoothing along the edge diminishes edge jagged effect. The hybrid partial differential equation(PDE) diffu- sion has the advantage of the three above PDE diffusion. Furthermore, a bborthogonal projection is described to per- form an interpolation that is reversible, and the interpolated image satisfies the degradation model strictly. The simulation demonstrates the performance of the proposed method is prominent. Compared with other existing PDE based zoom methods, the zoomed image using the proposed method looks more natural and has better visu- al effect not only on the strong edges but also on weak edges.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第5期1098-1103,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60875025)资助课题
关键词 图像放大 图像插值 前向后向扩散 非线性扩散 冲激滤波器 image enlargement image interpolation forward and-backward diffusion anisotropic diffu-sion shock filter
  • 相关文献

参考文献16

  • 1Aly H A, Dubois E. Specification of the observation model for regularized image up-sampling[J]. IEEE Trans. on hnage Process, 2005, 14(5) : 567- 576.
  • 2Freeman W T, Jones T R, Pasztor E C, Example-based super-resolution[J]. IEEE Computer Graphics and Applications, 2002, 22 (2) :56 - 65.
  • 3Li X, Orchard M T. New edge-directed interpolation[J]. IEEE Trans, on Image Processing,2001,10(10) :1521 - 1527.
  • 4Mallat S, Yu G. Super-resolution with sparse mixing estimators[J]. IEEETrans. onIrnugeProcessing, 2010,11 (19) :2889 -2900.
  • 5Belahmidi A, Guichard F. A partial differential equation approach to image zoom[C]//Proc, of the International Conference on Image Processing, 2004 : 649 - 652.
  • 6Aly H A, Dubois E. Image up-sampling using total-variation regularization with a new observation model[J]. IEEE Trans. on Image Processing, 2005,14(10) :1647 - 1659.
  • 7詹毅,王明辉,万群,李梦.TV图像插值的双方向扩散改进算法[J].软件学报,2009,20(6):1694-1702. 被引量:6
  • 8Roussos A, Maragos P. Reversible interpolation of vectorial images by an anisotropic diffusion-projection PDE[J]. International Journal of Computer Vision, 2009,84(2) : 130 - 145.
  • 9Perona P, Malik J. Scale space and edge detection using anisotropic diffusion[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence ,1990,12(7) :692 - 639.
  • 10Osher S J, Rudin L I. Feature-oriented image enhancement using shock filters [J]. Society of Industrial and Applied Mathematics Journal on Numerical Analysis, 1990, 27 (4) : 919 - 940.

二级参考文献15

  • 1van Ouwerkerk JD. Image super-resolution survey. Image and Vision Computing, 2006,24(10): 1039-1052.
  • 2Aly HA, Dubois E. Image up-sampling using total-variation regularization with a new observation model. IEEE Trans. on Image Processing, 2005,14(10): 1647-1659.
  • 3Sun Q J, Zhang XP, Wu EH. A method of image zooming-in based on B6zier surface interpolation. Journal of Software, 1996,10(6): 570-574 (in Chinese with English abstract), http://www.jos.org.cn/ch/reader/view_abstract.aspx?file_no=19990602&flag=1.
  • 4Belahmidi A, Guichard F. A partial differential equation approach to image zoom. In: Proc. of the 2004 Int'l Conf. on Image Processing (ICIP 2004). Singapore: IEEE Computer Society Press, 2004. 649-652. http://ieeexplore.ieee.org/xpls/abs all.jsp? arnumber- 1418838.
  • 5Hwang JW, Lee HS. Adaptive image interpolation based on local gradient features. IEEE Signal Processing Letters, 2004,11(3): 359-362.
  • 6Cha Y, Kim S. Edge-Forming methods for image zooming. Journal of Mathematical Imaging and Vision, 2006,25(3):353-364.
  • 7Malgouyres F, Guichard F. Edge direction preserving image zooming: A mathematical and numerical analysis. SIAM Journal on Numerical Analysis, 2001,39(1 ): 1-37.
  • 8Bertalmio M, Bertozzi AL, Sapiro G. Navier-Stokes, fluid dynamics, and image and video inpainting. In: Proc. of the 2001 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. 2001. 355-362. http://ieeexplore.ieee.org/xpls/abs all. jsp? arnumber-990497.
  • 9Tsai A, Yezzi A, Willsky AS. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. on Image Processing, 2001,10(8): 1169-1186.
  • 10Aly HA, Dubois E. Specification of the obser 'ation model for regularized image up-sampling. IEEE Trans. on Image Processing, 2005,14(5):567-576.

共引文献5

同被引文献79

  • 1张文军,古德祥.昆虫种群的一类时空动态模型研究[J].生态科学,2001,20(4):1-7. 被引量:12
  • 2李梓.关于符号计算的探讨[J].计算机应用与软件,1993,10(6):25-28. 被引量:6
  • 3钱伟长.关于非线性科学[J].自然杂志,1995,17(1):1-3. 被引量:15
  • 4王明亮,周宇斌.Chafee-Infante反应扩散方程的精确解[J].兰州大学学报(自然科学版),1996,32(3):26-30. 被引量:20
  • 5肖进胜,冯慧,易本顺,郭兰英.半线性抛物型微分包含的有限差分法[J].武汉大学学报(理学版),2006,52(3):262-266. 被引量:5
  • 6Rudin I., Osher S, Total variation based image restoration with free local constraints [-C]//IEEE International Conference on Image Pro- cessing, 1994,1.
  • 7Francine C,Pierre L l.,Jean M M,et al. Image selective smoothing and edge-detect ion by nonlinear diffusion I-J]. Australasian Physical Engineering Sciences in Medicine, 1992, 29(01) : 182 - 193.
  • 8Wang W W, Feng X C. Anisotropic diffusion with nonlinear structure tensorEJ]. Multi-scale Modeling ,. Simulation,2008,7(02) : 963 - 977.
  • 9Bai J, Feng X C. Fractional order an isotropic diffusion f or image denoising f-J]. IEEE Transactions on Image Processing , 2007, 16(10) : 2492- 2502.
  • 10Guy G,Stanley O. Nonloeal operators with applications to image processing[-J3. Multi-scale Modeling Simulation, 2008, 7( 3 ) : 1005 - 1028.

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部