期刊文献+

基于S-NARF算法的点云图像特征提取与描述 被引量:3

Feature Extraction and the Description of Point Cloud Image Based on S-NARF Algorithm
原文传递
导出
摘要 针对NARF算法运算速度较慢和提取图像边界特征的局限性问题,提出了一种在以SIFT关键点为原点的局部坐标系下估算3D NARF特征描述符的算法。首先对点云图像进行特征检测,基于DoG3D算子提取3D SIFT关键点。然后对特征进行描述,以SIFT关键点为原点,在相应的深度图像中建立局部坐标系,并在该坐标系下,依据图像分辨率建立斑块,设计一种等角度间距的星状射线。用射线穿过的单元计算描述符向量各元素的值,构成特定维描述符。最后采用RGB-D传感器获取环境点云数据进行实验。结果表明,改进算法提高了运算速度,所提取的特征更具一般性,并且基本不改变描述符的典型性和独特性。 In view of the slow operation speed of the NARF algorism and the limitations of the extracting border feature, a new algorism is proposed to calculate the 3D NARF by using a local coordinate system with origin in the SIFT keypoint position. Firstly, the feature of the point cloud image is detected, a DoG3D operator is built to extract the 3D SIPF keypoints, then the feature of the keypoints is described, in a local coordinate system with origin in the keypoint position of the corresponding range image, the patches are projected to the design star shaped patterns with beams of equal angle interval within them according to the image resolution. The values of the descriptor vector elements are calculated by using the ceils that lie under the beam, to form the given dimension descriptor. Finally, the experiments based on the point cloud obtained by the RGB-D sensor show that the algorithm can speed up the operation and the extracted feature is more general than that extracted by previous algorithms, by retaining more typical and distinct features of the descriptors.
出处 《科技导报》 CAS CSCD 北大核心 2013年第13期45-48,共4页 Science & Technology Review
关键词 SIFT NARF特征描述符 点云 SIFT NARF descriptor point cloud
  • 相关文献

参考文献10

  • 1Frome A, Huber D, Kolluri R, et al. Recognizing object in range data using regional point descriptos [C]//Pajdla T, Matas J. Computer Vision- ECCV 2004: Proceedings of 8th European Conference on Computer Vision, Prague, Czech Republic, May 11-14,2004.
  • 2Rusu R B, Blodow N, Marton Cs Z, et al. Aligning point cloud views using persistent feature histogram [C]// International Conference on Intelligent Robots and Systems, Nice, France, Sept 22-26, 2008.
  • 3Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 4Ni D, Chui Y P, Qu Y, et al. Reconstruction of volumetric ultrasound panorama based on improved 3D SIFT[J]. Computerized Medical Imaging and Graphics, 2009, 33(7): 559-566.
  • 5Flitton G, Breckon T P, Megherbi N. Object recogntion using 3D SIFT in comples CT volimes[C]//British Machin Vision Conference, Aberystwyth, Wales, UK, Aug 30-Sept 2, 2010.
  • 6Steder B, Rusu R B, Konolige K, et al. Point feature eon 3D range scans taking into account object boundaries[C]//IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011.
  • 7Hogman V. Building a 3D map from RGB-D sensors [D]. Stockholm: Royal Institute of Technology (KTH), 2012.
  • 8Rusu R B, Cousins S. 3D is here: Point cloud library (PCL)[C]// IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011.
  • 9Rusu R B, Marton Z C, Blodow N, et al. Towards 3D point cloud based object maps for household environments [31. Robotics and Autonomous Systems, 2008, 56(11): 927-941.
  • 10Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C]// IEEE International Conference on Computer Vision, Bombay, India, Jan 4-7, 1998.

同被引文献28

  • 1黄磊,卢秀山,陈传法.基于激光扫描仪数据的建筑物立面特征信息提取[J].测绘科学,2006,31(6):141-142. 被引量:16
  • 2韩家炜.数据挖掘:概念与技术[M].北京:机械工业出版社,2007:188-198.
  • 3戴静兰,陈志杨,叶修梓.ICP算法在点云配准中的应用[J].中国图象图形学报,2007,12(3):517-521. 被引量:196
  • 4Hoover A, Jean - Baptiste G, Jiang X et. al. An experi- mental comparison of range image segmentation algorithms [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18 ( 7 ) :673 - 689.
  • 5Ester M, Kriegel H - P, Sander Jet. al. A density - based algorithm for discovering clusters in large spatial databases with noise[ C ]. Proceedings of the 2nd International Con- ference on Knowledge Discovery and Data Mining, AAAI Press, 1996:226 - 231.
  • 6Chire. DBSCAN [ DB/OL]. 2013 - 10 -21. http://en.wikipedia, org/wiki/DBSCAN.
  • 7Besl P J,Mckay N D. A Method for Registration of 3-D Shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,(02):239-256.doi:10.1109/34.121791.
  • 8Fischler M A,Bolles R C. Random Sample Consensus:A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J].Communications of the ACM,1981,(06):381-395.
  • 9Steder B,Rusu R B,Konolige K. Point Feature Extraction 3D Range Scans Taking into Account Object Boundaries[EB/OL].http://www.willowgarage.com,2013.
  • 10Dong N,Chui Y P,Qu Y. Reconstruction of Volumetric Ultrasound Panorama Based on Improved 3D SIFT[J].Computerized Medical Imaging and Graphics,2009.559-566.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部