期刊文献+

联合指标独立成分分析在多变量过程故障诊断中的应用 被引量:23

Combined Indices for ICA and Their Applications to Multivariate Process Fault Diagnosis
下载PDF
导出
摘要 作为主成分分析(Principal component analysis,PCA)和因子分析(Factor analysis,FA)的扩展,独立成分分析(Independent component analysis,ICA)已经在多变量过程故障诊断中得到了很多的应用和发展.ICA的监测指标通常有三个(I2、I2e和SPE),使用起来不如一个指标方便,且分散了故障信息.本文利用三个指标的加权和,提出了两种联合的ICA监测指标.本文进一步对比分析了不同指标的统计意义和物理意义,并在仿真数据中验证了联合指标的优势,在TE过程中验证了其检测和诊断特性. As a development of principal component analysis(PCA) and factor analysis(FA),independent component analysis(ICA) has been applied effectively to multivariate process monitoring and fault diagnosis and has got many excellent achievements.Usually,ICA has three indices for monitoring and diagnosis,i.e.,I 2,I 2 e,and SP E,and the multi-indexes make the monitoring and diagnosis inconvenient and also decentralizes the fault influence.In this paper,two combined indices for ICA are developed,both of which are weighted sums of the three indices.The statistics and physical meanings of all indices are analyzed and compared.Based on the simulation tests on a numerical example and TE process,the proposed combined indices have some advantages compared with the traditional multi-indices.
出处 《自动化学报》 EI CSCD 北大核心 2013年第5期494-501,共8页 Acta Automatica Sinica
基金 国家自然科学基金(61074081) 北京市科技新星计划(2011025) 中央高校基本科研业务费(RC1101)资助~~
关键词 多变量过程 故障诊断 独立成分分析 联合指标 Multivariate process fault diagnosis independent component analysis combined index
  • 相关文献

参考文献5

二级参考文献73

  • 1FengDING TongwenCHEN.Modeling and Identification of Multirate Systems[J].自动化学报,2005,31(1):105-122. 被引量:35
  • 2陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 3孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 4焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 5Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry[J]. Computers & Chemical Engineering, 2008, 32(1/2): 12- 24.
  • 6Kano M, Nagao K, Hasebe S, et al. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem[J]. Computers & Chemical Engineering, 2002, 26(2): 161- 174.
  • 7Qin S J, Valle S, Piovoso M J. On unifying multiblock analysis with application to decentralized process monitoring[J]. J of Chemometrics, 2001, 15(9): 715-742.
  • 8Qin S J, Cherry G, Good R, et al. Semiconductor manufacturing process control and monitoring: A fab-wide framework[J]. J of Process Control, 2006, 16(3): 179-191.
  • 9Zhang Y, Dudzic M S. Online monitoring of steel casting processes using multivariate statistical technologies: From continuous to transitional operations[J]. J of Process Control, 2006, 16(8): 819-829.
  • 10Undey C, Tatara E, Cinar A. Real-time batch process supervision by integrated knowledge-based systems and multivariate statistical methods[J]. Engineering Applications of Artificial Intelligence, 2003, 16(5/6): 555- 566.

共引文献269

同被引文献370

引证文献23

二级引证文献174

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部