期刊文献+

一类模糊双线性跳变系统的随机镇定问题 被引量:1

Stochastic Stabilization for a Class of Fuzzy Bilinear Jump Systems
下载PDF
导出
摘要 研究了一类模糊双线性跳变系统的随机镇定问题.采用T-S模糊建模技术来构建模糊双线性跳变模型,然后通过并行分布补偿(Parallel distributed compensation,PDC)方法和选择合适的模糊隶属度函数,将整个非线性控制器表示为一组局部线性控制器的模糊综合.此外,还推导出了保证闭环模糊双线性跳变系统随机稳定的充分条件,并且这些条件最终可归结为一组线性矩阵不等式(Linear matrix inequalities,LMIs)的可行性问题.最后,连续搅拌反应釜(Continuous stirred tankreactor,CSTR)系统的数值示例表明该设计方法的合理性和有效性. This paper deals with the problem of stochastic stabilization for a class of fuzzy bilinear systems with Markovian jump parameters.The Takagi-Sugeno(T-S) fuzzy modeling technique is adopted to construct a fuzzy bilinear jump model.By means of the parallel distributed compensation(PDC) method,an overall nonlinear controller is constructed by blending a set of local linear controllers through selected membership functions.Besides,some sufficient conditions are derived to guarantee the stochastic stability of the closed-loop fuzzy bilinear jump system via linear matrix inequalities(LMIs).Finally,a numerical example for a continuously stirred tank reactor(CSTR) system is given to illustrate the validity and effectiveness of the designed procedure.
出处 《自动化学报》 EI CSCD 北大核心 2013年第5期587-593,共7页 Acta Automatica Sinica
基金 国家自然科学基金(61134007) 江苏省基础研究计划(自然科学基金)(BK2012111) 中央高校基本科研业务费专项资金(JUSRP111A40) 高等学校学科创新引智计划(B12018) 江苏高等学校优秀科技创新团队 江苏高校优势学科建设工程项目资助~~
关键词 T-S模糊双线性模型 跳变参数 随机镇定 线性矩阵不等式 连续搅拌反应釜系统 Takagi-Sugeno(T-S) fuzzy bilinear model jump parameters stochastic stabilization linear matrix inequalities(LMIs) continuously stirred tank reactor(CSTR) system
  • 相关文献

参考文献17

  • 1Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(1): 116-132.
  • 2Wang H O, Tanaka K, Griffin M F. Parallel dis- tributed compensation of nonlinear systems by Takagi- Sugeno fuzzy model. In: Proceedings of the 4th IEEE International Conference on Fuzzy Systems and the Second International Fuzzy Engineering Sympo- sium (FUZZ-IEEE/IFES). New York, USA: IEEE, 1995. 531-538.
  • 3Boyd S, E1 Ghaoui L, Feron E, Balakrishnan V. Linear Ma- trix Inequalities in System and Control Theory. Philadel- phia, PA: SIAM, 1994. 7-35.
  • 4Mohler R R. Bilinear Control Processes. New York: Aca- demic, 1973.
  • 5Elliott D L. Bilinear systems. Encyclopedia of Electrical En- gineering. New York: Wiley, 1999.
  • 6Mohler R R. Nonlinear Systems: Applications to Bilinear Control. Englewood Cliffs, N J: Prentice-Hall, 1991.
  • 7Li T H S, Tsai S H. T-S fuzzy bilinear model and fuzzy con- troller design for a class of nonlinear systems. IEEE Trans- actions on Fuzzy Systems, 2007, 15(3): 494-506.
  • 8Li T H S, Tsai S H, Lee J Z, Hsiao M Y, Chao C H. Ro- bust H∞ fuzzy control for a class of uncertain discrete fuzzy bilinear systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(2): 510-527.
  • 9Tsai S H. Robust H∞ control for van de vusse reactor via T- S fuzzy bilinear scheme. Expert Systems with Applications, 2011, 38(5): 4935-4944.
  • 10Tsai S H, Li T H S. Robust fuzzy control of a class fuzzy bilinear systems with time-delay. Chaos, Solitons, and Frac- tals, 2009, 39(15): 2028-2040.

同被引文献23

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部