期刊文献+

时变过程在线辨识的即时递推核学习方法研究 被引量:9

Online Identification of Time-varying Processes Using Just-in-time Recursive Kernel Learning Approach
下载PDF
导出
摘要 为了及时跟踪非线性化工过程的时变特性,提出即时递推核学习(Kernel learning,KL)的在线辨识方法.针对待预测的新样本点,采用即时学习(Just-in-time kernel learning,JITL)策略,通过构造累积相似度因子,选择与其相似的样本集建立核学习辨识模型.为避免传统即时学习对每个待预测点都重新建模的繁琐,利用两个临近时刻相似样本集的异同点,采用递推方法有效添加新样本,并删减旧模型的样本,以快速建立新即时模型.通过一时变连续搅拌釜式反应过程的在线辨识,表明了所提出方法在保证计算效率的同时,较传统递推核学习方法提高了辨识的准确程度,能更好地辨识时变过程. An online identification method using just-in-time recursive kernel learning (KL) is proposed to trace the time- varying characteristics of nonlinear chemical processes. For each query sample, a just-in-time kernel learning (JITL) model is established using the similar set constructed by a presented cumulative similarity factor. Different from traditional just- in-time learning approaches discarding their models at each time, an efficient modeling strategy is proposed to reduce the computational load by utilizing the similarity between two neighborhood models. Consequently, a new just-in-time kernel learning model can be quickly constructed using the recursive updating algorithm, by introducing new samples and deleting different samples. The superiority of the proposed online identification method is demonstrated by a continuous stirred tank reactor process with time-varying parameters, showing better prediction performance compared with conventional recursive kernel learning approaches.
出处 《自动化学报》 EI CSCD 北大核心 2013年第5期602-609,共8页 Acta Automatica Sinica
基金 国家自然科学基金(61004136 61143005 61273069)资助~~
关键词 过程辨识 即时学习 核学习 最小二乘支持向量回归 递推辨识 Process identification, just-in-time learning (JITL), kernel learning (KL), least squares support vector regression (LSSVR), recursive identification
  • 相关文献

参考文献20

  • 1Ljung L, Hjalmarsson H, Ohlsson H. Four encounters with system identification. European Journal of Control, 2011, 17(5): 449-471.
  • 2Himmelblau D M. Accounts of experiences in the applica- tion of artificial neural networks in chemical engineering. In- dustrial and Engineering Chemistry Research, 2008, 47(16): 5782-5796.
  • 3Wang L X. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. New Jersey: Prentice-Hall, 1994.
  • 4Scholkopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Be- yond. Cambridge, MA: MIT Press, 2002.
  • 5Suykens J A K, van Gestel T, de Brabanter J, De Moor B, Vandewalle J. Least Squares Support Vector Machines. Singapore: World Scientific, 2002.
  • 6Rojo-Alvarez J L, Martinez-Ramon M, de Prado-Cumplido M, Artes-Rodriguez A, Figueiras-Vidal A R. Support vec- tor method for robust ARMA system identification. IEEE Transactions on Signal Processing, 2004, 52(1): 155-164.
  • 7Toivonen H T, Totterman S, Akesson B. Identification of state-dependent parameter models with support vector re- gression. International Journal of Control, 2007, 80(9): 1454-1470.
  • 8Totterman S, Toivonen H T. Support vector method for identification of Wiener models. Journal of Process Control, 2009, 19(7): 1174-1181.
  • 9Li C H, Zhu X J, Cao G Y, Sui S, Hu M R. Identification of the Hammerstein model of a PEMFC stack based on least squares support vector machines. Journal of Power Sources, 2008, 175(1): 303-316.
  • 10Wang H, Pi D Y, Sun Y X. Online SVM regression algorithm-based adaptive inverse control. Neurocomputing, 2007, 70(3): 952-959.

同被引文献99

引证文献9

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部