期刊文献+

基于近红外光谱和化学计量学的党参定性模型的建立 被引量:1

Discrimination of Codonopsis Pilosula According to Geographical Origin with Near Infrared Spectroscopy and Chemometrics
原文传递
导出
摘要 采用近红外光谱结合化学计量学,对来源于不同产地的81个党参样本进行快速、无损的定性研究。将党参样本粉碎后,采用光纤漫反射采集近红外光谱,并结合随机森林建立党参的定性模型,同时对比分析了不同光谱预处理方法(未处理、变量标准化+一阶导数、偏移校正+一阶导数)对鉴别结果的影响。结果显示,样本可按产地区分开;光谱经偏移校正+一阶导数处理后,训练集准确率达100%,测试集准确率为94%。研究表明,近红外光谱结合随机森林原理简单,易操作,准确率高,为作为快速鉴别党参的参考方法。 The combination of near infrared (NIR) spectrum technique with chemometrics provides a fast and nondestructive approach to study the Codonopsis pilosula in relation to its geographical origin. Near infrared spectrum were collected by using a fiber-optic in diffuse reflectance mode. Random Forests (RF) was applied for establishing classification model of Codonopsis pilosula samples (81) and different pretreatment methods (untreated, SNV-k 1st derivative and offset correctionq-1st derivative) were compared. After spectrum data were pretreated by offset correction q-+ 1st derivative,the classification accuracy of random forests reached 100 % for training set and 94 M for test set. The study indicated that near infrared spectroscopy combined with random forests was simple,efficient and accurate, and could identify geographical origin of Codonopsis pilosula fast.
出处 《光谱实验室》 CAS 2013年第3期1216-1221,共6页 Chinese Journal of Spectroscopy Laboratory
基金 甘肃省中医药管理局项目(GZK-2008-32)
关键词 近红外光谱 随机森林 K-邻近 Near Infrared (NIR) Spectrum Random Forests (RF) k-Nearest NeighborAlgorithm (KNN)
  • 相关文献

参考文献9

  • 1Qiao C F,He Z D,Han Q ,et al. Tile Use of Lobetyolin and HPLC-UV Fingerprints for Quality Assessment of Radix Codonopsis [J]. Journal of Food and Drug Analys,2007,15 ( 3 ) :258-264.
  • 2Li C Y, Xu H X, Han Q Bet al. Quality Assessment of Radix Codonopsis by quantitative Nuclear Magnetic Resonance[J]. Chromatography A,2009,1216(11) :2124-2129.
  • 3Yu H Y,Niu X Y,Lin H Jet al,A Feasibility Study on On-Line Determination of Rice Wine Composition by Vis-NIR Spectroscopy and Least-Squares Support Vector Machines[J].Fxd Chemistry,2009,113(1) :291-296.
  • 4Breiman L, Random forests[J]. Machine Learning, 2001,45 (1) : 5-32.
  • 5Bylander T. Estimating Generalization Error on Two-Class Datasets UsingOut- of-bag Estlmates[J']. Machine Learning, 2002,48 (1):287-297.
  • 6Archer k J ,Kimes R V. Empirical Characterization of Random Forest Variableimportance Measures[J]. Computational Statistics Data Analysis, 2008,52(4) : 2249-2260.
  • 7李波霞,魏玉辉,席莉莉,段好刚,武新安.近红外光谱和化学计量学对不同产地不同产期当归的定性研究[J].光谱实验室,2011,28(4):2128-2134. 被引量:10
  • 8李响,李庆波,徐怡庄,张广军,吴瑾光,杨丽敏,凌晓锋,周孝思,王健生.KNN方法在癌症中红外光谱检测中的应用[J].光谱学与光谱分析,2007,27(3):439-443. 被引量:12
  • 9McClure W F, Stan? eld D L. N ear-Inared Spectroscopy of Biomaterials , bl : Chalmers ,1 M, Gri f fiths P R, Handbook oJ Vibrational Spectroscopy[M]. New York :John Wiley . Sons, 2002. 243-259.

二级参考文献31

共引文献20

同被引文献13

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部