期刊文献+

同轴静电纺丝法制备血管内皮生长因子纳米纤维缓释载体 被引量:2

Preparation of coaxial electrospinning nanofibers for vascular endothelial growth factor delivery
原文传递
导出
摘要 目的应用同轴静电纺丝的方法制备以聚己内酯(PCL)为壳层,血管内皮生长因子(VEGF)和牛血清蛋白(BSA)为芯的纳米纤维缓释载体,观察其体外缓释VEGF的特性,并检测释放VEGF的活性。方法观察15—18kV电压下制备出来的VEGF纳米纤维缓释载体的形貌结构特征,分别在第1、3、7、15、30天检测BSA和VEGF的释放量分别为BSA/PCL(17%、34%、38%、45%、56%),BSA/PCL.聚乙二醇(PEG)(30%、45%、80%、89%、92%),VEGF(5%、10%、20%、60%、90%),绘制时间.累积释放量曲线(%),检测释放VEGF的活性,并与新鲜的VEGF组和无VEGF组作为平行对照。结果15、16、17、18kV制备出来的同轴静电纺丝直径为分别为(282.00±43.57)、(199.13±32.87)、(182.00±27.74)、(159.00±36.33)nm。VEGF在30d内逐渐释放,累积释放量98%,释放出来YEGF的生物学活性与新鲜的VEGF之间差异无统计学意义(P〉0.05),与无VEGF之间差异有统计学意义(P〈0.05)。结论运用同轴静电纺丝技术成功制备了以PCL为壳层,VEGF和BSA为芯的纳米纤维缓释载体,通过调整电压可以控制纳米纤维的直径,该载体还能够保持VEGF的生物学活性并持续释放,同时可以通过加入PEG来调节其释放量。 Objective To construct coaxial electrospinning nanofibers with poly (ε-caprolactone) (PCL) as the shell and BSA and vascular endothelial growth factor (VEGF) as the core, expore its ability for VEGF delivery in vitro, and examine the biological activity of VEGF released. Methods The morphology of VEGF coaxial electrospinning nanofibers was observed at the voltage from 15-18 kV. At 1st, 3rd, 7th, 15th, and 30th day, bovine serum albumin (BSA)/PCL was 17%, 34%, 38%, 45% and 56%, BSA/PCL-polyethyleneglycol (PEG) was 30%, 45% , 80% , 89% and 92% , and VEGF release was 5% , 10% , 20%, 60% , 90% , respectively. The curve of time-cumulative release percentage was drawn. At last, the biological activity of VEGF released was tested. Results The diameters of nanofibers at the voltage of 15, 16, 17 and 18 kV were (282.00 ±43.57), (199. 13 ±32.87), (182.00 ±27.74), ( 159. 00 ± 36. 33 ) nm respectively. The VEGF was released gradually within 30 days, and the cumulative release percentage was almost 98%. The biological activity of the released VEGF has no significant difference from the fresh VEGF ( P 〉 0. 05 ), but significant difference from no-VEGF group ( P 〈 0. 05 ). Conclusion We construct the VEGF coaxial electrospinning nanofibers with PCL as the shell and BSA and VEGF as the core, and can change the diameter of nanofibers by adjusting the voltage. The nanofobers can retain biological activity of VEGF and release VEGF gradually, and can also adjust the releasing by adding PEG.
出处 《中华实验外科杂志》 CAS CSCD 北大核心 2013年第5期897-900,共4页 Chinese Journal of Experimental Surgery
基金 基金项目:国家自然科学基金资助项目(30872543)
关键词 药物缓释 血管内皮生长因子 纳米纤维 Drug release Vascular endothelial growth factor Nanofiber
  • 相关文献

参考文献23

  • 1Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel..Adv Mater,2004 ,16 : 1151-1170.
  • 2Zhang Y,Lim CT,Ramakrishna S,et al. Reeent development of poly-mer nanofibers for biomedical and biotechnological applications. JMater Sci Mater Med ,2005,164:933-946.
  • 3艾合麦提.玉素甫,李靖扬,朱良,王振斌.微孔聚已内酯膜对异体肌腱移植后粘连的预防作用[J].中华实验外科杂志,2006,23(2):167-169. 被引量:7
  • 4Bolgen N, Vargel I,Korkusuz P,et al. In vivo performance of antibi-otic embedded electrospun PCL membranes for prevention of abdomi-nal adhesions. J Biomed Mater Res B Appl Biomater,2007 ,81 :530-543.
  • 5Bazilevsky AV , Yarin AL, Megaridis CM. Co-electrospinning ofcore.Shell fibesusing a single-nozzle technique. Langmuir, 2007 ,23 : 2311 -2314.
  • 6Deitzel JM,Kleinmeyer J,Harris D,et al. The effect of processing var-iables on the morphology of electrospun nanofibers and textiles. Poly-mer,2001 ,42:261-272.
  • 7Megelski S, Stephens JS, Chase DB,et al. Micro-and nanostructuredsurface morphology on electrospun polymer fibers. Macromolecules,2002,35:8456-8466.
  • 8Doshi J, Reneker DH. Electrospinning process and applications ofelectrospun fibers. J Electrostatics, 1995,35 :151-160.
  • 9Hayati I,Bailey Al,Tadros TF. Investigations into the mechanisms ofelectrohydrodynamic spraying of liquids. 1. Effect of electric-field andthe environment on pendant drops and factors affecting the formationof stable jets and atomization. J Colloid Interface Sci,1987 ,117 :205-221.
  • 10Zhang CX, Yuan XY, Wu LL, et al. Study on morphology of electro-spun poly( vinyl alcohol) mats. Eur Poly J ,2005 ,41 :423-432.

二级参考文献29

  • 1张卫国,姜长明,曹国英.高分子纤维素预防肌腱粘连的实验研究[J].中华手外科杂志,1995,11(1):51-53. 被引量:21
  • 2陈星权,吴若彬,郑少忆,郭惠明,黄劲松,黄克力.血管外膜应用西罗莫司对静脉移植物再狭窄的作用[J].中华实验外科杂志,2006,23(4):532-533. 被引量:7
  • 3褚红军,于伟勇,纪广玉,邹良建,徐志云,滕忠照.可降解外支架预防高脂血症兔自体移植静脉再狭窄[J].中华实验外科杂志,2007,24(2):147-149. 被引量:2
  • 4Magee M J, Alexander JH, Hafley G, et al. Coronary artery bypass graft failure after on-pump and off-pump coronary artery bypass:findings from PREVENT IV. Ann Thorac Surg,2008,85:494-500.
  • 5Gaffney MM, Hynes SO, Barry F, et al. Cardiovascular gene therapy: current status and therapeutic potential. Br J Pharmacol, 2007,152: 175-188.
  • 6Rosenfeldt F, He GW, Roubos N. Vein graft neointimal hyperplasia: prevention is better than cure. J Thorac Cardiovasc Surg,2007,133: 1118-1119.
  • 7Klesius AA, Konerding MA, Knez P, et al. External stenting with a new polyester mesh reduces neointimal hyperplasia of vein grafts in a sheep model. Int J Artif Organs,2007,30:930-938.
  • 8Dolmateh B, Dong YH, Heeter Z. Evaluation of three polytetrafluoroethylene stent-grafts in a model of neointimal hyperplasia. J Vasc Interv Radiol,2007 ,18 :527-534.
  • 9Kohler TR, Toleikis PM, Gravett DM, et al. Inhibition of neointimal hyperplasia in a sheep model of dialysis access failure with the bioabsorbable vascular wrap paclitaxel-eluting mesh. J Vasc Surg, 2007, 45 : 1029-1038.
  • 10Siew EL, Rajab NF, Osman AB, et al. In vitro biocompatibility evalua, tion of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer in fibroblast cells. J Biomed Mater Res A,2007,81:317-325.

共引文献14

同被引文献90

  • 1白伦.长丝工艺学[M].上海:东华大学出版社,2011:301.
  • 2Rissanen M, Puolakka A, Ahola N, et al. Effect of protein- loading on properties of wet-spun poly (L, D-actide) multi- filament fibers[J3, j Appl Polym Sci,2010,116(4).2174.
  • 3Yudin V E, Dobrovolskaya I P, Neelov I M, et al. Wet spinning of fibers made of chitosan and chitin nanofibrils [J]. Carbohydr Polym,2014,108:176.
  • 4Ucar S, Yilgor P, Hasirci V, et al. Chitosan-based wet- spun scaffolds for bioactive agent delivery[J]. J Appl Polym Sci, 2013,130(5) : 3759.
  • 5Liu Y, Shao Z, Vollrath F. Extended wet-spinning can modify spider silk properties[J]. Chem Commun, 2005,19 ~ 2489.
  • 6Meyer M, Baltzer H, Schwikal K, Collagen fibres by ther- moplastic and wet spinning[J]. Mater Sci Eng C,2010,30 (8):1266.
  • 7Lin H Y, Wang H W. The influence of operating parame- ters on the drug release and antibacterial performances of al- ginate fibrous dressings prepared by wet spinning[J]. Bio- matter, 2012,2(4) : 321.
  • 8Mathiowitz E, Lavin D M, Hopkins R A. Wet spun micro- fibers: Potential in the design of controlled-release scaf- folds? [J]. Therapeutic Delivery, 2013,4(9) : 1075.
  • 9Joshua S B,Kerr H M,Howard N E S, et al. Wound healing dressings and drug delivery systems: A review[J]. J Pharma- ceutical Sci, 2008,97 (8) : 2892.
  • 10Nie H L, Ma Z H, Fan Z X, et al. Polyacrylonitrile fibers efficiently loaded with tamoxifen citrate using wet-spinning from co-dissolving solution[J]. Int J Pharmaceutics, 2009, 373(1):4.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部