期刊文献+

基于GARCH模型的期望损失ES非参数核估计

Nonparametric Kernel Estimation of Expected Shortfall Based on The GARCH Model
原文传递
导出
摘要 风险度量ES最新的非参数估计方法,不依赖于分布假设,但不能动态反应金融时间序列的风险.针对金融时间序列的波动,结合GARCH模型进行期望损失ES的非参数核估计,得到随市场波动而动态变化的ES预测.通过数值模拟和对近两年的上证指数实证分析验证了该方法能准确而有效的反映市场风险. The latest nonparametric estimation method of risk measure ES(Expected Short- fall) does not depen on distributional assumptions, but it can not reflect dynamically the risk of financial time series . In view of fluctuations of financial time series, combining ES non- parametric kernel estimation of GARCH model, get the ES 15rediction that dynamic changes along with the market fluctuation. Empirical analysis of the Shanghai Composite Index for nearly two years verifies the method can reflect the market risk accurately and effectively. By numerical simulation and empirical analysis of the Shanghai Composite Index in nearly two years, it is showed that the method can accurately and effectively reflect the market risk.
作者 夏师 罗中德
出处 《数学的实践与认识》 CSCD 北大核心 2013年第9期44-48,共5页 Mathematics in Practice and Theory
关键词 ES(Expected Shortfall) 核密度估计 GARCH模型 ES (Expected Shortfall) kernel density estimate GARCH model.
  • 相关文献

参考文献9

  • 1Artzner P, Delbaen F, Eber J-M, and Heath D. Thinking coherently[J]. Risk, 1997(10): 68-71.
  • 2Artzner P, Delbaen F, Eber J-M, Heath D. Coherent measures of risk[J]. Math-ematical Finance, 1999(9): 203-228.
  • 3Scaillet O. Nonparametric estimation and sensitivity analysis of expected shortfall[J]. Mathematical Finance, 2004, 14(1): 115-129.
  • 4Scaillet O. Nonparametric estimation of conditional expected shortfall[J]. Re-vue Assurances at Gestion des Risques Insurance and Risk Management Journal, 2005(74): 639-660.
  • 5刘静,杨善朝,姚永源.α-混合序列下期望损失ES的两步核估计[J].应用概率统计,2010,26(5):485-500. 被引量:5
  • 6欧诗德,易丹辉.不同模型下ES风险度量的计算[J].数理统计与管理,2009,28(4):646-652. 被引量:3
  • 7Silverman B W. Density Estimation for Statistics and Data Analysis [M]. London: Chapntan and Hall. 1998.
  • 8唐林俊,杨虎,张洪阳.核密度估计在预测风险价值中的应用[J].数学的实践与认识,2005,35(10):29-35. 被引量:16
  • 9Bollerslev, Tim. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Economet- rica, 1986(31): 307-327.

二级参考文献20

  • 1文凤华,马超群,陈牡妙,兰秋军,杨晓光.一致性风险价值及其算法与实证研究[J].系统工程理论与实践,2004,24(10):15-21. 被引量:9
  • 2刘瑞涛,蒋建成.价值风险的非参数估计方法[J].应用概率统计,2006,22(2):208-213. 被引量:1
  • 3Artzner, P., Delbaen, F., Eber, J.M. and Heath, D., Thinking coherently, Risk, 10(1997), 68-71.
  • 4Acerbi, C. and Sirtori, C., Expected shortfall as a tool for financial risk management, Working paper, 2001, http://www.gloriamundi.org.
  • 5Dowd, K., Estimating VaR with order statistics, Journal of Derivatives, 8(2001), 23-30.
  • 6Scaillet, O., Nonparametric estimation and sensitivity analysis of expected shortfall, Mathmatical Finance, 14(1)(2004), 115-129.
  • 7Scaillet, O., Nonparametric estimation of conditional expected shortfall, Revue Assurances et Gestion des Risques/Insurance and Risk Management Journal, 74(2004), 639-660.
  • 8Roussas, G.G. and Ioannides, D.A., Moment inequalities for mixing sequences of random variables, Stochastic Anal. Appl., 5(1987), 61-120.
  • 9Yang, S., Maximal moment inequality for partial sums of strong mixing sequences and application, Acta Mathematica Sinica, English Series, Available online 30 September 2006.
  • 10Fazekas, I. and Klesov, O., A general approach to the strong law of large numbers, Theo. Probab. Appl., 45(3)(2001), 436-449.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部