期刊文献+

Lü系统的慢流形分析 被引量:1

The Slow Manifold Analysis of L's System
原文传递
导出
摘要 主要讨论了L系统的慢流形,通过一个参数变换,将L系统视为快慢型自治动力系统,用几何奇异摄动的方法,借助于Fenichel第一定理得到了慢流形M_ε的表达式.在给定参数的情况下,用Matlab做出了该系统的轨线图及其一阶近似慢流形的图形.基于求得的慢流形,又对该系统的动力学行为进行了定性分析. In this paper, the Lu's system' s slow manifold is discussed. The Lus' system can be regarded as a slow-fast autonomous dynamical system by a parameter mapping. Based on the geometric singular perturbation method, slow manifold Mε is solved details by the Fenichel' s first Theorem .With the given parameters, the orbit of Lu's system and manifold of the Lu's system are made by Matlab. In the last ,we analysize qualitatively the dynamical behavior of the Lfi's System on the slow manifold.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第9期219-223,共5页 Mathematics in Practice and Theory
基金 上海工程技术大学青年基金(2011Q23)
关键词 Lü系统 快慢型动力系统 慢流形 Lu's system slow-fast dynamical system slow manifold
  • 相关文献

参考文献6

  • 1Christopher K R T. Jones. Geometric singular perturbation theory in Dynamical systems[J]. Lecture Notes in Math, Springer, Berlin, 1996, 1609: 44-118.
  • 2Neil Fenichel. Geometric Singular Perturbation Theory for Ordinary Differential Equations[J]. J Diff Eq, 1979(31): 53-98.
  • 3E.F.Mischenko & N.Rozov, Differential Equations with small parameters and relaxtion oscilla- tions[M]. NewYork ,Plenum Press, 1980.
  • 4J Lfi, G Chen, S Zhang. Dynamical analysis o a new chaotic attractor[J]. Int J of Bifurcation and Chaos, 2002, 12(5): 10-12.
  • 5Radu Haiduc. A fifty minute introduction to slow-fast systems, 2004.10.
  • 6Ramdani S, et al. Slow manifolds of some chaotic systems with applications to laser systems[J]. Int J of Bifurcation and Chaos, 2000, 10(12): 2792-2744.

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部