摘要
主要讨论了L系统的慢流形,通过一个参数变换,将L系统视为快慢型自治动力系统,用几何奇异摄动的方法,借助于Fenichel第一定理得到了慢流形M_ε的表达式.在给定参数的情况下,用Matlab做出了该系统的轨线图及其一阶近似慢流形的图形.基于求得的慢流形,又对该系统的动力学行为进行了定性分析.
In this paper, the Lu's system' s slow manifold is discussed. The Lus' system can be regarded as a slow-fast autonomous dynamical system by a parameter mapping. Based on the geometric singular perturbation method, slow manifold Mε is solved details by the Fenichel' s first Theorem .With the given parameters, the orbit of Lu's system and manifold of the Lu's system are made by Matlab. In the last ,we analysize qualitatively the dynamical behavior of the Lfi's System on the slow manifold.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第9期219-223,共5页
Mathematics in Practice and Theory
基金
上海工程技术大学青年基金(2011Q23)
关键词
Lü系统
快慢型动力系统
慢流形
Lu's system
slow-fast dynamical system
slow manifold