期刊文献+

原位法MgB_2-B_4C复相超导体合成及相含量调控研究 被引量:1

Research on the phase formation and fraction control of superconducting MgB_2-B_4C composite synthesized in situ
下载PDF
导出
摘要 以B4C和Mg为原料合成的MgB2-B4C复相超导体具有高的临界电流密度(Jc)和高的超导转变温度(Tc),是一种有潜力的实用MgB2超导材料,其成相机理对复相MgB2超导体的相含量调控和磁通钉扎研究具有重要意义。结合经典烧结理论,研究了B4C-Mg真空固相烧结制备MgB2-B4C复相超导体的超导相形成和晶粒生长过程,给出了B4C-Mg的金斯特林格扩散模型和MgB2晶粒生长过程。通过选择B4C原料粒径,MgB2-B4C复相超导体超导相体积相含量在18%-88%范围可控。相含量88%的MgB2-B4C复相超导体临界转变温度达33.5K,转变宽度1.5K。10 K环境6T外场下电流密度可以达到1×104A/cm2,表明MgB2-B4C复相超导体具有良好的磁通钉扎行为。 The superconducting MgB2 -B4C composite, fabricated by just using two raw materials B4C and Mg, exhibits a high critical current density ( Jc ) and a high superconducting transition temperature ( Tr ) and has potential for high - power ap- plications. The MgB2 phase formation mechanism is significant to the volume fraction control of superconducting phase and flux pinning studying in MgB2 composites. Based on the classical sintering theory, MgB2 phase formation and grain growth in super- conducting MgB2 -B4C composites synthesized by vacuum solid state reaction, were investigated. We considered that B4C -Mg reaction process could be explained well by Ginstling diffusion mode]. The volume fraction of MgB2 phase in the superconducting MgB2 - B4C composites ranged from 18% to 88% by using different grain sizes of B4C raw material. A sample with 88% MgB2 fraction showed a critical transition temperature of 33.5 K, a transition width of 1.5 K, and a remarkable in -field current densi- ty of 1 × 104 A/cm2 under 6T at IOK. Those results indicate that superconducting MgBz - B4C composite has an excellent flux pinning behavior.
出处 《低温与超导》 CAS 北大核心 2013年第5期35-39,共5页 Cryogenics and Superconductivity
基金 上海市重大科技项目(11DZ1100305) 上海市重点学科开放课题(S30105)资助
关键词 MGB2 复相超导体 成相 MgB2, Composite superconductor, Phase formation
  • 相关文献

参考文献12

  • 1Nagamatus J, Nakagawa N, Muranaka T, et al. Supercon- ductivity at 39 K in magnesium diboride [ J ]. Nature, 2001,410 : 63 - 64.
  • 2Buzea C, Yamashita T. Review of the superconducting properties of MgB2 [ J ]. Supercond. Sci. Technol. , 2001,14 : R115 - R146.
  • 3Grasso G, Malagoli A, Ferdeghini C, et al. Large trans-port critical currents in unsintered MgB2 superconducting tapes[J]. App. Phys. Lett. ,2001,79(2):230-232.
  • 4Canfield P C, Finnemore D K, Bud' ko S L, et al. Super- conductivity in Dense MgB2 Wires [ J ]. Phys. Rew. Lett. ,2001,86( 11 ) :2423 -2426.
  • 5Zhuang C G, Meng S, Zhang C Y, et al. Ultrahigh cur- rent- carrying capability in clean MgB2 films [ J ]. J. Appl. Phys., 2008,11M:013924.
  • 6Viljamaa J, Kulich M, Kov6c P, et al. Comparison on effects of B4C ,A1203 , and SiC doping on performance of MgB2 conductors [ J]. IEEE Trans. Appl. Supercond. , 2011,21 (3) :2659 - 2663.
  • 7Zhang Y B, Shan X J, Bai X W, et al. In situ synthesis and current - carrying eharacteristies of superconducting MgB2 - B4C composites with MgB2 fractions ranging from 18% to 85% [ J]. Supercond. Sci. Technol., 2012,25:095003.
  • 8吕振兴,曹坚,单雪娇,朱红妹,张义邴.原位法MgB_2-B_4C复相超导体的成相与特性[J].低温物理学报,2011,33(3):208-213. 被引量:1
  • 9张可立.固体无机化学[M].武汉:武汉大学出版社,2004.
  • 10Kazakov S M ,Puzniak R,Rogacki K,et al. Carbon sub- stitution in MgB2 single crystals: Structural and super- conducting properties [ J ]. Phys. Rev. B, 2005,71 : 024533.

二级参考文献16

  • 1J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature, 410 (2001), 63.
  • 2C. Buzea and T. Yamashita, Review of the superconducting properties of MgB2, Supercond. Sci. Technol. , 14 (2001), 1.
  • 3P. C. Canfield, D. K. Finnemore, S. L. Budko, J. E. Ostenson, G. Lapertot, C. E. Cunningharn, C. Petrovic, Superconductivity in Dense MgBz Wires, Phys. Rev. Lett., 86 (2001), 2423.
  • 4G. Grasso, A. Malagoli, C. Ferdeghini, S. Roncallo, V. Braecini, and A. S. Siri, Large transport critical currents in unsintered MgB2 superconducting tapes, Appl. Phys. Lett., 79 (2001), 230.
  • 5W. N. Kang, H. J. Kim, E. M. Choi, C. U. Jung, S. Lee, MgB2 Superconducting Thin Films with a Transition Temperature of 39 Kelvin, Science, 292 (2001), 1521.
  • 6Y. Takano, H. Takeya, H. Fujii, H. Kumakura, T. Hatano, K. Togano, H. Kito and H. Ihara, Superconducting properties of MgB2 bulk materials prepared by high-pressure sintering, Appl. Phys. Lett. , 78 (2001), 2914.
  • 7B. J. Senkowicz, J. E. Giencke, S. Patnaik, C. B. Eom, E. E. Hellstrom, and D. C. Larbalestier, Improved upper critical field in bulk-form magnesium diboride by mechanical alloying with carbon, Appl. Phys. Lett. , 86 (2005), 202502.
  • 8M. D. Sumption, M. Bhatia, M. Rindfleisch, M. Tomsie, S. Soltanian, S. X. Dou, E. W. Collings, Large upper critical field and irreversibility field in MgB2 wires with SiC additions, Appl. Phys. Lett., 86 (2005), 092507.
  • 9A. Yamamoto, J. Shimoyama, S. Ueda, I. Iwayama, S. Horii, K. Kishio, Effects of B4C doping on critical current properties of MgB2 superconductor, Supercond. Sci. Technol. , 18 (2005), 1323.
  • 10O. V. Shcherbakova, A. V. Pan, J. L. Wang, A. V. Shcherbakov, S. X. Dou, D. Wexler, E. Babic, M. Jerci- novic and O. Husnjak, Sugar as an optimal carbon source for the enhanced performance of MgB2 superconductors at high magnetic fields, Supercond. Sci. Technol. , 21 (2008), 015005.

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部