期刊文献+

光在有机太阳能电池中的约束与捕获 被引量:4

Confinement and Trapping of Light in Organic Solar Cells
原文传递
导出
摘要 有机太阳能电池吸光活性层的电学传输特性和光学吸收特性不匹配,是制约其能量转换效率提升的主要原因之一。采用陷光结构操纵入射光波,提升电池对光的约束和捕获能力以达到"电学薄"和"光学厚"的等效作用,是解决有机太阳能电池光电矛盾的有效手段。从光学和电学的双重视角考察了单结有机太阳能电池的运行机理,详细讨论了等离子体、光子晶体等各类结构的陷光原理与特点,展望了有机太阳能电池陷光结构的发展趋势,有助于拓展其设计思路和理解下一代太阳能电池的先进光学管理理念。 The mismatch between electrical transmission properties and light absorption properties is one of the main reasons that limit the power conversion efficiency of organic solar cells. This contradiction could be efficiently resolved by light trapping structures which manipulate incident light and enhance light absorption. These structures essentially extend the photoactive layer thickness, therefore achieve light absorption equivalent to that of a much thicker layer, and nevertheless retain good charge transport properties of a thin layer. The characteristics and principles of these architectures such as plasmonics and photonic crystal are discussed in detail. The prospect of light trapping architectures is also presented. It may be helpful to expand the design ideas of organic solar cells and understand the advanced light management of the next-generation solar cells.
出处 《激光与光电子学进展》 CSCD 北大核心 2013年第5期66-73,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61078047) 四川省教育厅青年基金(11ZB133) 四川大学青年教师基金(2012SCU11085)资助课题
关键词 光学器件 陷光结构 有机太阳能电池 活性层 激子 optical devices light trapping structure organic solar cell active layer exciton
  • 相关文献

参考文献49

  • 1M. Kaltenbrunner, M. S. White, E. D. Glowacki et al: Ultrathin and lightweight organic solar cells with high flexibility [J]. Nature Commun. , 2012, 3:770.
  • 2M. Manceau, D. Angmo, M. Jorgensen et al: ITO-free flexible polymer solar cells: From small model devices to roll-to- roll processed large modules[J]. Org. Electron. , 2011, 12(4): 566-574.
  • 3M. G. Kang, H. J. Park, S. H. Ahnet al: Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells [J]. Sol. Energ. Mat. & Sol. Cell, 2010, 94(6): 1179-1184.
  • 4C. C. Chen, L. T. Dou, R. Zhu et al: Visibly transparent polymer solar cells produced by solution processing [J]. ACS Nano, 2012, 6(8): 7185-7190.
  • 5G. Li, R. Zhu, Y. Yang. Polymer solar ceils [J]. Nature Photon. , 2012, 6(3): 153-161.
  • 6D. J. Lipomi, B. C. K. Tee, M. Vosgueritchianet al: Stretchable organic solar cells [J]. Adv. Mater. , 2011, 23(15) : 1771-1775.
  • 7H. J. Park, T. Xu, J. Y. Lee et al: Photonic color filters integrated with organic solar cells for energy harvesting [J]. ACS Nano, 2011, 5(9) : 7055-7060.
  • 8S. Lizin, P. S. Van, S. E. De et al: The future of organic photovoltaic solar cells as a direct power source for consumer electronics [J]. Sol. Energ. Mat. Sol. Cells, 2012, 103:1-10.
  • 9S. D. Zilio, K. Tvingstedt, O. Inganfis et al: Fabrication of a light trapping system for organic solar cells [J]. Microelectron. Engng., 2009, 86(4-6)- 1150-1154.
  • 10N. C. Lindquist, W. A. Luhman, S. H. Oh et al: Plasmonic nanocavity arrays for enhanced efficiency in organic photovohaic cells [J]. Appl. Phys. Lett. , 2008, 93(12): 123308.

二级参考文献63

  • 1NAKAYATakayuki,QIUJian-Rong,ZHOUChang-He,HIRAOKazuyuki.Fabrication of Dammann Gratings Inside Glasses by a Femtosecond Laser[J].Chinese Physics Letters,2004,21(6):1061-1063. 被引量:5
  • 2郑志敏,丁天怀,张建福.小孔阵列衍射特性与应用[J].光学学报,2006,26(2):294-299. 被引量:14
  • 3张泽全,黄元申,庄松林,饶小红,沈国土.亚波长光栅的衍射效率[J].仪器仪表学报,2007,28(4):667-672. 被引量:9
  • 4M. A. Sheehy, L. Winston, J. C. Carey et al.. Role of the background gas in the morphology and optical properties of laser-microstructured silicon[J]. Chem. Mater., 2005, 17(14): 3582~3586.
  • 5T. H. Her, R. J. Finlay, C. Wu et al.. Microstructuring of silicon with femtosecond laser pulses[J]. Appl. Phys. Lett., 1998, 73(12): 1673~1675.
  • 6L. L. Ma, Y. C. Zhou, N. Jiang et al.. Wide-band “black silicon” based on porous silicon[J]. Appl. Phys. Lett., 2006, 88(17): 171907.
  • 7C. C. Striemer, P. M. Fauchet. Dynamic etching of silicon for broadband antireflection applications[J]. Appl. Phys. Lett., 2002, 81(16): 2980~2981.
  • 8S. Strehlke, S. Bastide, J. Guillet. Design of porous silicon antireflection coatings for silicon solar cells[J]. Mater. Sci. Engng., 2000, 69-70(14): 81~86.
  • 9Wang Fei, Yu Hongyu, Li junshuai et al.. Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application[J]. Opt. Lett., 2010, 35(1): 40~42.
  • 10Li Junshuai, Yu Hongyu, Wong Shemein et al.. Design guidelines of periodic Si nanowire arrays for solar cell application[J]. Appl. Phys. Lett., 2009, 95(24): 243113.

共引文献43

同被引文献63

  • 1孙晨, 李传皓, 石瑞英, 等. 金属纳米颗粒对有机太阳能电池光吸收效率影响的研究[J]. 光子学报, 2012, 41(11): 1335-1341.
  • 2Wang C, Yu S C, Chen W, et al. Highly efficient tight-trapping structure design inspired by natural e- volution[J]. Sci Rep, 2013, 3: 1025.
  • 3Martin A G, Supriya P. Harnessing plasmonics for solar cells[J]. Nat Photonics, 2012, 6: 130.
  • 4Mokkapati S, Catchpole K R. Nanophotonic light trapping in solar cells[J]. J Appl Phys, 2012, 112: 101101.
  • 5Albert P, Harry A A. Photonic design principles for ultrahigh-efficiency photovoltaics[J]. Nat Ma- ter, 2012, 11: 174.
  • 6Sangmoo J, Wang S. Nanoscale photon management in silicon solar cells[J]. J Vac Sci Technol A, 2012, 30(6) : 060801.
  • 7Pankaj K, Suresh C. Recent progress and future as- pects of organic solar cells[J]. Prog Photovolt: Res Appl, 2012, 20: 377.
  • 8Yablonovitch E. Statistical ray optics. J Opt Soc Am, 1982, 72(7): 899.
  • 9Dennis M C, Jeremy N M, Harry A A. Solar cell light trapping beyond the ray optic limit[J]. Nano Lett, 2012, 12: 214.
  • 10Erik G, Yang P. Light trapping in silicon nanowire solar cells[J]. Nano lett, 2010, 10(3): 1082.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部