期刊文献+

重力对垂直管内气液搅混流相界面特性影响的数值研究 被引量:1

Numerical Study on Interfacial Characteristics of Gas-liquid Churn Flow in Vertical Tube Due to Gravity
下载PDF
导出
摘要 采用流体体积函数模型(VOF)对常重力、部分重力和微重力环境下垂直管内空气–水搅混流和制冷剂R134a蒸汽–液体搅混流进行数值模拟,研究重力环境对气液搅混流界面波高度,相界面稳定性及界面波形成周期的影响。与实验结果的对比显示数值模型是可靠的。数值结果表明,随着重力环境的减小,气液搅混流的界面波高度有所增大,相界面稳定性明显增强,界面波形成周期随之延长。空气–水搅混流界面波与R134a蒸汽–液体搅混流相比有显著不同。尽管R134a蒸汽和R134a液体的入口速度较小,但与空气–水搅混流相比,其相界面稳定性明显下降,形成周期缩短。上述结果对微重力和部分重力下换热设备的研究与设计提供了重要依据。 Using volume of fluid (VOF) method, numerical simulation was done to investigate the influence of gravity on gas-liquid (air-water and refrigerant R134a vapor-liquid) chum flow interfacial wave amplitude, interface stability and period of interfacial wave. The model was verified by the experimental data. The simulation results show that the gas-liquid chum flow interracial wave amplitude increases with the decrease of gravity. In addition, the interface stability is enhanced considerably and the period of the interracial wave is also prolonged. Significantly different from air-water chum flow, the interface stability of R134a vapor-liquid chum flow is worse and the period of interfacial wave is shorter, although the flow rates of R134a vapor and R134a liquid are slower. The conclusion provides theory basis for the research and optimization design of heat exchanger under partial gravity and microgravity conditions.
作者 周云龙 黄娜
出处 《中国电机工程学报》 EI CSCD 北大核心 2013年第14期75-81,6,共7页 Proceedings of the CSEE
关键词 搅混流 流体体积函数模型 数值分析 相界面 chum flow volume of fluid (VOF) numericalsimulation interface
  • 相关文献

参考文献20

  • 1瓦尔特Hu.空间流体科学与空间材料科学[M].葛培文,王景涛,译.北京:中国科学技术出版社,1991:14-15.
  • 2赵建福.微重力条件下气/液两相流流型的研究进展[J].力学进展,1999,29(3):369-382. 被引量:32
  • 3Hewitt G F. Multiphase flow: [C]//3rd Microgravity Fluid American, 1996. the gravity of the situation Physics Conf, Ohio,.
  • 4盖德希特斯洛尼.多相流动和传热手册[M].鲁钟琪,译.北京:机械工业出版社.1993.487-517.
  • 5Takenaka N, Fujii T, Akagawa K, Nishida K. Flow pattem transition and heat transfer of inverted annular flow[J]. International Journal of Multiphase Flow, 1989, 15(5): 767-785.
  • 6尹大燕,贾力.振荡热管管内流型对传热性能的影响[J].应用基础与工程科学学报,2007,15(3):363-368. 被引量:15
  • 7Preisegger E, Henrici R. Refrigerant 134a. The first step into a new age of refrigerants[J]. International Journal of Refrigeration, 1992, 15(6): 326-331.
  • 8Enrico Da Riva, Davide Del Col. Numerical simulation of chum flow in a vertical pipe[J]. Chemical Engineering Science, 2009(64).. 3753-3765.
  • 9Zhaolin Wang, Kamiel S Gabriel, Devon L Manz. The influences of wave height on the interfacial friction in annular gas-liquid flow under normal and microgravity conditions[J]. Multiphase Flow, 2004(30): 1193-1211.
  • 10曹夏昕,阎昌琪,孙立成,孙中宁,黄渭堂.竖直管内弹状流向搅混流转变界限的判定[J].核动力工程,2006,27(z1):68-72. 被引量:4

二级参考文献49

  • 1颜晓虹,赵耀华.微管内流动沸腾流型的可视化研究[J].工程热物理学报,2005,26(z1):183-186. 被引量:2
  • 2曹小林,周晋,晏刚.脉动热管的结构改进及其传热特性的实验研究[J].工程热物理学报,2004,25(5):807-809. 被引量:40
  • 3宋静.微通道内气-液两相流动特性研究[J].青岛科技大学学报(自然科学版),2006,27(4):299-303. 被引量:9
  • 4齐守良,张鹏,王如竹,徐学敏.微通道中液氮的流动沸腾——两相流动压降分析[J].机械工程学报,2007,43(5):36-43. 被引量:10
  • 5[2]Jayanti S,Hewitt G F.Prediction of the Slug-Churn Flow Transition in Vertical Two-Phase Flow[J].Int.J.Multi-Phase Flow,1992,18(6):847 ~ 860.
  • 6[3]Barnea D,Branea D.Slug/Churn Transition in Upward Gas-Liquid Flow[J].Chemical Engineering Science.1986,41:159~ 163.
  • 7[4]Chen X T,Brll J P.Slug to Churn Transition in Upward Vertical Two-Phase Flow[J].Chemical Engineering Science.1997,152(23):4269 ~ 4272.
  • 8[5]Yehuda Taitel,Dvora Bornea.Modeling Flow Pattern Transitionsfor Steady Upward Gas-Liquid Flow in Vertical Tubes[J].AICHE Journal,1980b,26(3):345 ~ 354.
  • 9[1]Tutu N K.Pressure Fluctuations and Flow Pattern Recognition in Vertical Two Phase Gas-Liquid Flows.Int.J.Multiphase Flow,1982,8(4):443-447
  • 10[2]Matsui G.Identification of Flow Regimes in Vertical GasLiquid Two-Phase Flow Using Differential Pressure Fluctuations.Int.J.Multiphase Flow,1984,10(6):711-720

共引文献71

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部