摘要
研究如下形式的非散度椭圆方程解的二阶导数的高阶可积性,其中系数aij(x)有界且具有小BMO范数,bi(x),c(x)∈Ln(Ω),Ω为Rn(n≥3)中的有界光滑域.
We establish a higher integrability for second derivatives of solutions to the nondivergence elliptic equations of the following type Lu=∑n i,j=1 δij(x) δ^2u/δxiδxj+∑n i=1bj(x)δu/δxi+c(x)u=h(x) where the coefficients aij(x) are bounded and have small BMO-norm, and bi(x) and c(x) belong to L^n (Ω) where Ω is a bounded smooth domain in R^n ( n ≥ 3 ).
出处
《中国科学院研究生院学报》
CAS
CSCD
北大核心
2013年第3期293-297,共5页
Journal of the Graduate School of the Chinese Academy of Sciences
基金
Supported by National Natural Science Foundation of China(11001221)
Mathematical Tianyuan Foundation of China(11126027)
Northwestern Polytechnical University Jichu Yanjiu Jijin Tansuo Xiangmu(JC201124)
关键词
非散度椭圆方程
小BMO范数
高阶可积性
nondivergence elliptic equation
small BMO-norm
higher integrability