期刊文献+

基于PSO-SVM模型的网络流量预测研究 被引量:2

Network Traffic Prediction Based on PSO-SVM Model
下载PDF
导出
摘要 针对网络流量高度自相关、随机性和非线性等时间序列特征,采用支持向量机(SVM)模型进行预测。针对SVM模型中参数难以确定的问题,采用粒子群(PSO)算法进行参数寻优,保证预测的精确度。将PSO-SVM模型预测结果与ARIMA自回归移动平均模型、BP神经网络模型预测结果进行比对,PSO-SVM模型具有更高的预测精度,能够更好地反映网络流量的变化规律。 Network traffic has the time series characteristic of highly autocorrelation, randomness and nonlinear, so a support vector machine (SVM) model is proposed for network traffic forecasting. But parameters of SVM model are very difficult to deter- mine, therefore particle swarm optimization (PSO) algorithm is used to search these parameters and make sure the accuracy of SVM model. Compared with autoregressive integrated moving average (ARIMA)model and BP Neural Networks, the forecast re- suits show that the PSO-SVM model has higher prediction precision. It can reflect the variety regulation of the network traffic.
出处 《湖南人文科技学院学报》 2013年第2期68-71,共4页 Journal of Hunan University of Humanities,Science and Technology
基金 湖南省高校科学研究项目(11C1065) 娄底市科技计划项目(2011)
关键词 网络流量 粒子群算法 支持向量机 预测 network traffic PSO SVM prediction
  • 相关文献

参考文献6

二级参考文献40

  • 1王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报(自然科学版),2005,35(5):859-862. 被引量:127
  • 2郭辉,刘贺平,王玲.最小二乘支持向量机参数选择方法及其应用研究[J].系统仿真学报,2006,18(7):2033-2036. 被引量:103
  • 3吴德会.基于最小二乘支持向量机的铣削加工表面粗糙度预测模型[J].中国机械工程,2007,18(7):838-841. 被引量:27
  • 4Suyken J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 5Vapnik V.Statistical Learning Theory[M].New York:Wiley-Interscience,1998.
  • 6SUMAN B.Simulated annealing-based multiobjective algorithm and their application for system reliability[J].Engineering Optimization,2003,35(4):391-416.
  • 7LIANG Y C,SMITH A E.An ant colony optimization algorithm for the redundancy allocation problem[J].IEEE Trans on Reliability,2004,53(3):417-423.
  • 8TIAN Pei,WANG Jian-cheng,ZHANG Wei,et al.A fault tree analysis based software system reliability allocation using genetic algorithm optimization[C]//Proc of World Congress on Software Engineering.Xiamen:[s.n.],2009:194-198.
  • 9RAMIREZ-MARQUEZ J E,ROCCO C M.All-terminal network reliability optimization via probabilistic solution discovery reliability[J].Engineering & System Safety.2008,93(11):1689-1697.
  • 10VAPNIK V N.The nature of statistical learning theory[M].New York:Spring-Verlag,1999.

共引文献169

同被引文献17

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部