期刊文献+

基于蚁群聚类算法的组合算法

Combinatorial Algorithm Based on Ant Colony Clustering Algorithm
下载PDF
导出
摘要 基于信息熵的蚁群聚类算法是一种自组织聚类算法,具备健壮性、可视化等特点,并能生成一些新的有意义的聚类模式。基于信息素的K-means算法的K值和初始聚类中心是事先给定的,而往往两者的选择可以直接影响聚类的效果和速度(K-means算法的缺点之一)。因此,在基于信息熵的蚁群聚类算法的基础上,结合基于信息素的K-means算法,提出了一种聚类组合算法。 The information entropy based ant clustering algorithm is a self-organized clustering algorithm, which possesses the characteristics of robustness, visualization, and ability to generate some new meaningful clustering models.K values in the K- means algorithm based on the pheromone and the initial clustering center are given in advance, and often both selections can directly affect the speed of clustering effect which is the disadvantage of K-means algorithm. Therefore, a new algorithm is proposed to combine the information entropy based ant clustering algorithm with pheromone based K-means algorithm.
出处 《洛阳理工学院学报(自然科学版)》 2013年第2期81-84,共4页 Journal of Luoyang Institute of Science and Technology:Natural Science Edition
关键词 蚁群算法 聚类 改进 组合算法 ant colony algorithm clustering improvement combinatorial algorithm
  • 相关文献

参考文献2

二级参考文献5

  • 1张白妮,骆嘉伟,汤德佑.动态的K-均值聚类算法在图像检索中的应用[J].计算机工程与设计,2004,25(10):1843-1846. 被引量:12
  • 2S M Weiss,C A Kulikowski.Computer Systems That Learning:Classification and prediction Methods from statistics ,Neural Nets ,Machine Learning,and Expert Systems[M].San Mateo,CA:Morgan Kaufmann,1991.
  • 3S K Murthy.Automatic construction of decision trees from data:A multidisciplinary survey[J].Data Mining and Knowledge Discovery,1998; 2: 345-389.
  • 4J Gehrke,R Ramakrishnan,V Ganti.Rainforest:A framework for fast decision tree construction of large datasets[C].In:Pvoc 1998 Int Conf Very large Data Bases,New York,1998-08:416~427.
  • 5高坚.基于并行多种群自适应蚁群算法的聚类分析[J].计算机工程与应用,2003,39(25):78-79. 被引量:16

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部