摘要
给出了基于压缩感知的全色和多光谱图像融合方法.分块压缩感知实现速度快、存储需求小,为海量遥感数据的压缩测量提供了有效策略.同时,利用小波变换的多分辨率特性,实现了压缩采样的多尺度融合.最后采用全变分技术重构融合图像.实验结果表明,与传统小波融合方法相比较,所提方法融合结果具有更高的空间分辨率和更好的光谱相关性.
In this study, a fusion strategy for panchromatic high resolution images and multi- spectral images is presented based on the block compressed sensing ( BCS ) and wavelet trans- form. Since the BCS enables fast computation and small memory requirement, the remote sens- ing images with large amounts of data can be compressively sampled by the BCS. Simultaneous- ly, taking full advantage of wavelet such as multi - resolution, the compressive measurement of remote sensing images is fused by the wavelet transform. And finally, the fused image is recon- structed by the minimization of total variance method. Experimental result shows that the pro- posed method can achieve a fusion with a higher spatial resolution and better spectral correla- tion than the conventional wavelet- based fusion method.
出处
《西安文理学院学报(自然科学版)》
2013年第2期1-5,共5页
Journal of Xi’an University(Natural Science Edition)
基金
陕西省自然科学基础研究计划项目(2012jq5006)
陕西省教育厅自然科学研究项目(12JK1108)
西安文理学院教育教学改革题目(2010B003)
关键词
压缩感知
小波变换
遥感
图像融合
compressed sensing
wavelet transform
remote sensing
image fusion