摘要
令阿Ar=(a_1,a_2,…,a_r),其中整数a_i≥2,r≥1.所谓图G的Ar着色即对 图G的边用不同的颜色c_1c_2,…,c_r着色,使得没有一个a_i个顶点的完全子 图的所有边都着色c_i(i=1,2,…,r).令HlN为具有N个顶点但不包含l个顶 点的完全子图的图的集合,N(Ar,l)表示G∈HlN但不能被 A 着色的图具有的 最少顶点数。本文定义一种临界图,并在此基础上利用H5(N-1)的临界图构造H5N 的临界图。通过证明H5(12)的临界图均能(3,3)着色,证明H5(12)中的图均能(3,3) 着色,进而得出:13<N((3,3),5)<18,优于前人得出的10<N((3,3),5)<18的结 果.
Let Ar=(a1,a2,…,ar),a'is integers≥2, r≥1. By an Ar-coloring of a graph G the authors mean a coloring of the edges of G by distinct colors c1,c2, …,cr,so that there are no complete subgraphs on ai vertices whose edges are co1ored in ci(i=1,2,…,r).Let HlN denote the set of all graphs on N vertices which do not contain comp1ete subgraph on l yertices. Let N(Ar,l) denote the minimum N so that there exists a graph G∈HlN which cannot be Ar-colored. In this paper, the authors define a kind of critica1 graphs, and then using the critica1 graphs of H5(N-1),construct the critica1 graphs of H5N. By proving al1 the critica1 graphs of H5(12) can be (3,3)-colorcd, the authors prove that all the graphs in H5(12) can be (3, 3)-colored, so the authors improve N((3,3),5)'s lower bound to N((3,3)5,5)≥13. Before this paper, the best bound of N((3,3), 5) is 10≤N((3,3),5)≤18. so far, l3≤N((3,3),5)≤18, given in this paper, is the best bound of N((3, 3), 5).
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
1991年第4期485-491,共7页
Journal of Dalian University of Technology
关键词
拉姆塞理论
临界图
Ar着色
无效图
isomorph
Ramsey Theory/critical graphs
invalid graphs
Ar-coloring