期刊文献+

铝粉与水反应的电化学研究 被引量:3

Reaction of Al Powder and Water Visa Electrochemistry Technology
下载PDF
导出
摘要 为评价Al-H2O反应中铝粉的燃烧效率,从电化学角度对粒径为50nm,2μm,13μm和29μm的铝粉进行水反应研究。通过测定不同温度下铝水反应极化曲线,初步建立起使用电化学参数(腐蚀电位,腐蚀电流密度,腐蚀电位温度系数)表征铝水反应的评价体系。拟合分析了实验数据,探讨了粒径和温度对铝水反应的影响。用法拉第定律和吉布斯-亥姆霍兹方程对反应进行了电化学热力学研究。结果表明,随着铝粉粒径的减小,反应的腐蚀电位减小,反应越容易进行。当粒径小于2μm时,粒径的减小对腐蚀电位的影响更加明显。25℃下50nm的Al粉在铝水体系中燃烧效率即可达90.6%,远高于2μm Al粉的66.7%。 In order to evaluate the combustion efficiency of AI powder in Al-H2O reaction, the reaction of AI powder with particle size of 50 nm, 2 μm,13 μm and 29 μm and H2O was studied from electrochemistry. An evaluated system to characterize the Al-H2O reaction with parameters including corrosion potential, corrosion current density and corrosion potential temperature coefficient was initially established by polarization curves of Al-H2O reaction at different temperatures, The experimental data were fitted and analyzed to discuss the behaviours of Al-H2O reaction affected by particle size and temperature. The electrochemical thermodynamics of Al-H2O reaction was studied by Faraday's law and Gibbs-Helmholtz equation. Results show that with the reduction of particle size of AI powder, the corrosion potential ( Ecorr) of Al-H2O reaction decreases and the Al-H2O reaction easily takes place. The decrease rate of E is relatively significant when the particle size is less than 2μm. The combustion efficiency of AI powder with 50 nm is 90.6% in Al-H2O system, which is much higher than that of AI powder with 21μm at 25 ℃ (66.7%).
出处 《含能材料》 EI CAS CSCD 北大核心 2013年第2期262-267,共6页 Chinese Journal of Energetic Materials
基金 数字制造装备与技术国家重点实验室开放基金(DMETKF2012009) 航天科技创新基金(CACS200903)
关键词 材料科学 铝水反应 电化学热力学 纳米铝 微米铝 material science Al-H2O reaction electrochemical thermodynamics nano-Al micro-Al
  • 相关文献

参考文献18

  • 1周杰,王树宗.超空泡鱼雷推进系统相关问题设计初探[J].鱼雷技术,2006,14(5):27-30. 被引量:6
  • 2郑邯勇.铝水推进系统的现状与发展前景[J].舰船科学技术,2003,25(5):24-25. 被引量:38
  • 3Franzoni F Milani M, Montorsi L, et al. Combined hydrogen production and power generation from aluminum combustion with water: Analysis of the concept[J]. Int I Hydrogen Energy, 2010,35(4): 1548 -1559.
  • 4Shafrovich E, Diakov V A. Combustion of novel chemical mix- tures for hydrogen generation [ J ]. Combust Flame, 2006,144 : 415 -418.
  • 5Huang Y, Risha G A, Yang V, et al. Analysis of nano-Aluminum particle dust cloud combustion in different oxidizer environments [C]//43th AIAA Aerospace Sciences Meeting and Exhibit, Re- no, NV,2005.
  • 6Czech E, Troczynski T. Hydrogen generation through massive corrosion of deformed aluminum in wate[J]. Int J Hydrogen En- ergy, 2010,35(3) :1029 -1037.
  • 7Mahmoodi K, Alinejad B. Enhancement of hydrogen generation rate in reaction of aluminum with water[J]. IntJ Hydrogen Ener- gy, 2010,35 (11 ) :5227 -5232.
  • 8Barcia S A, Floresa / R. The interaction of AI atoms with water molecules: a theoretical study[J]. J Chem Phys, 2009,131 : 174307 .
  • 9Miller T F, Herr J D. Green rocket propulsion by reaction of AI and Mg powders and water[C]//40th AIAA/ASME/SAE/ASEEJoint Propulsion Conference and Exhibi, Fort Lauderdale, Flori- da, 2004.
  • 10Armstrong R W, Baschung B, Booth D W, et al. Enhanced propellant combustion with nanopartides [ J ]. Nano Letters, 2003,3(2): 253 -255.

二级参考文献19

  • 1罗凯,党建军,王育才,张宇文.金属水反应水冲压发动机系统性能估算[J].推进技术,2004,25(6):495-498. 被引量:32
  • 2高永琪,顾建农.超空泡鱼雷有关流体动力分析[J].海军工程大学学报,2005,17(3):57-60. 被引量:19
  • 3[1]Lee W M. Aluminum Powder/Water Reaction Ignited by Electrical Pulsed Power, 1993,(8).
  • 4[2]Foote J P,Lineberry J T,Thompson B R,AIAA 96-3086.
  • 5Foote J P, Lineberry J T, Thompson B R. Investigation of a- luminum particle combustion for underwater propulsion [ R ]. AIAA 1996-3086.
  • 6Rozenband V I, Afanaseva L F, Lebedeva V A. Activation of ignition of aluminum and its mixtures with oxides by chro- mium chloride[ J]. Combustion Explosion and Shock Waves, 1990, 26(5) : 13-15.
  • 7Trunov M A, Schoenitz M, Dreizin E L. Ignition of alumi- num powders under different experimental conditions [ J ]. Propellants Explosives Pyrotechnics, 2005, 30(1): 36-43.
  • 8Moore J D, Risha G A, Kuo K K. Effect of reactant initial temperature on methane/oxygen diffusion flame stability in a furnace[ J ]. Combustion Science and Technology, 2005, 177( 11 ) : 2069-2089.
  • 9Servaites J, Krier H, Melcher J C, et al. Ignition and com- bustion of aluminum particles in shocked H2O/O2/Ar and CO2/O2Ar mixtures [ J]. Combustion and Flame, 2001, 125(1-2) : 1040-1054.
  • 10Lurnan J R, Wehrman B, Kuo K K, et al. Development and characterization of high performance solid propellants containing nano-sized energetic ingredients [ J ]. Proceed- ings of the Combustion Institute, 2007, 31 (2): 2089- 2096.

共引文献45

同被引文献50

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部