期刊文献+

卫星运动对压缩编码孔径光谱成像的影响 被引量:2

Impact of Satellite Movement on Compressive Coded Aperture Spectral Imaging
下载PDF
导出
摘要 用于遥感光谱成像的光谱成像仪普遍存在信息获取慢、光子收集效率低、信噪比低或焦平面阵列大等问题,另外数据立方体庞大的数据量给数据传输造成了极大压力。为了从根本上解决这些问题,文章提出将压缩编码孔径应用于遥感光谱成像中,即压缩编码孔径遥感光谱成像。文章对卫星平台的俯仰、侧滚和偏航运动进行建模,然后利用此模型对成像过程进行仿真和重建,提高了成像品质。由于运动模型以及压缩编码孔径成像技术的引入,使得遥感光谱图像的压缩在成像过程中完成,从而大大提高了传统焦平面阵列的利用率,减小了数据传输的压力,减小了成像光谱仪的体积、质量与成本。 The spectral imagers used in remote sensing spectral imaging often suffer from some short-comings including low information acquisition speed,low photon collection efficiency,low signal-to-noise ra-tio or large focal plane array;besides,the huge amount of data of the data cube causes high pressure to the data transmission.In order to solve these problems,the article proposes to apply a Compressive Coded Aperture(CCA) to remote sensing spectral imaging.It is a compressive coded aperture for remote sensing spectral im-aging.The motions of satellite platform as pitch,roll and yaw are modeled,and this model is used to simulate imaging procedure,reconstruct images and improve image quality.Thanks to the introduction of the motion model and CCA,the compression of remote sensing spectral images is achieved with the imaging process,and then it highly improves the use ratio of focal plane array,reduces the amount of the data transmission,decreases the volume,weight and cost of the imaging spectrometers.
出处 《航天返回与遥感》 2013年第2期16-24,共9页 Spacecraft Recovery & Remote Sensing
关键词 压缩编码孔径 光谱成像 光谱混叠 运动模型 空间遥感 Compressive Coded Aperture spectral imaging spectral aliasing motion model space re-mote sensing
  • 相关文献

参考文献16

  • 1Green R O, Eastwood M L, Sarture C M, et al. Imaging Spectroscopy and the Airborne Visiblelnfrared Imaging Spectrometer (AVIRIS) [J]. Remote Sens. Environ, 1998, 65(3): 227-248.
  • 2Herrala E, Okkonen J T, Hyvarinen T S, et al. Imaging Spectrometer for Process Industry Applications[J].Proc. SPIE, 1994, 2248(33): 33-40.
  • 3Morris H, Hoyt C, Treado Elmaging Spectrometers for Fluorescence and Raman Microscopy: Acousto-optic and Liquid Crys- tal Tunable Filters[J]. Appl. Spec- trosc, 1994, 48(7): 857-866.
  • 4Descour M R, Volin C E, Dereniak E L, et al.Demonstration of a High-speed Nonscanning Imaging Spectrometer[J]. Opt. Lett., 1997, 22(16): 1271-1273.
  • 5Brady D J, Gehm M E.Compressive Imaging Spectrometers Using Coded Apertures[J]. Proc. SPIE, 2006, 6246: 62460A.
  • 6Candes E, Romberg J, Tao T.Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information[J]. IEEE Trans. Inf. Theory, 2006, 52(2): 489-509.
  • 7Candes E, Tao T. Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies[J]. IEEE Trans. Inf. Theory, 2006, 52(12): 5406-5425.
  • 8Donoho D. Compressed Sensing[J]. IEEE Trans. Inf. Theory, 2006, 52(4): 1289-1306.
  • 9Donoho D L. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 10Candes E, Romberg J, Tao T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

二级参考文献13

共引文献5

同被引文献16

  • 1DUARTE, M F. DAVENPORT M A, TAKHAR D, el al. Single pixel imaging via compressive sampling [J]. IEEE Signal Processing Magazine. 2008. 25(2): 83 91.
  • 2ROMBERG J. Imaging via compressive sampling [J]. IEEE Signal Magazine, 2008, 25(2): 14- 20.
  • 3CANDES E, WAKIN M. An introductioq to compressive sampling [J]. IEEE Signal Processing Magazine, 20()8, 25(2): 21-30.
  • 4BARANIUK R. Compressive sensing [J]. IEEE Signal Processing Magazine, 2007, 24(4): 118 -121.
  • 5WILL.ETT R M, MARCIA R F, N1CHOLS J M. Compressed sensing for practical oplieal im;tging systems: a tutorial [J]. Optics Engineering, 2011. 50(7): 072601-1 072601-13.
  • 6EVI.ADOV S, LEVI O, STERN A. Progressive compressive imaging from radon projections [J]. Oplics Express, 2012, 20(4): 4260-4271.
  • 7LI H, XIONG J, ZENG G H. Lensless ghost imaging for moving objects [J]. Optical Engineering, 2011, 50(12): 127005.
  • 8WAKIN M B, LASKA J N, DUARTE M F, et al. Compressive imaging for video representation and coding [C]. 25th Picture Coding Symposium, Beijing, China, April, 2006.
  • 9FOUCART S, RAUHUT H. A mathematical introduction to compressive sensing [M]. London: Birkhauser, 2013: 1-22.
  • 10CHEN S, DONOHO D, SAUNDERS M. Atomic decomposition by basis pursuit [J]. SIAM Rev., 2001, 43(1): 129-159.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部