期刊文献+

一类具有时滞的CTL免疫反应的病毒动力学模型的稳定性分析 被引量:3

Stability analysis of basic virus dynamics model with time delays
下载PDF
导出
摘要 建立和分析了一类具有Holling Ⅱ CTL免疫反应且带有免疫时滞的病毒动力学模型.讨论了系统解的有界性,并通过分析平衡点处的特征方程,得到无病平衡点的全局稳定性和正平衡点稳定的条件.其结果推广了基本动力学系统,且可以用来解释免疫状态的复杂性. In this paper,a model with time delays is built on the basic dynamic virus system. By analyzing the characteristic equation of the linearized system of original at the positive equilibrium,the stability of the positive equilibrium is discussed. It is found that time delays affect the stability of equilibrium. The results can be used to explain the complexity of the immune state and generalize the basic virus dynamics model.
机构地区 西北大学数学系
出处 《纺织高校基础科学学报》 CAS 2013年第1期32-35,64,共5页 Basic Sciences Journal of Textile Universities
基金 陕西省教育厅自然科学专项基金项目(11JK0511)
关键词 CTL免疫反应 病毒动力学模型 时滞 平衡点 CTL immune virus dynamics model time delays equilibrium
  • 相关文献

参考文献10

  • 1BONHOEFFER S,MAY R M, SHAW G M, et al. Virus dynamics and drug therapyEJJ. Proc Natl Acad Sci USA, 1997,94:6 971-6 976.
  • 2NOWAK M A, MAY R M. Virus dynamics Mathematical principles of immunology and virology[M]. New Yorkz Ox- ford University Press,2000.
  • 3KAGI D, HENGARTNER H. Different roles for cytotoxic T-cells in the control of infections with cytopathic versus noncytopathic virusesD. Curr Opin Immunol, 1996,8 z 857-860.
  • 4SCHMITZ J E, KURODA M J, SANTRA S, et al. Control of viremia in simian immunodeficiency virus infection by CD8 + lymphocytesrJ']. Science, 1999,283 :857-860.
  • 5XIE Qizhi, H UANG Dongwei, ZHANG Shuangde, et al. Analysis of a viral infection model with delayed immune response[J]. Applied Mathematical ModeUing,2010,34(9) 2 388-2 395.
  • 6李祺,窦霁虹.一类多时滞病毒动力系统稳定性分析[J].纺织高校基础科学学报,2012,25(3):284-287. 被引量:1
  • 7刘洪涛.一类捕食-传染病模型的稳定性分析[J].纺织高校基础科学学报,2012,25(1):59-62. 被引量:5
  • 8李畅通,戴飞,冯孝周.基于IPM策略的捕食系统的全局稳定性[J].纺织高校基础科学学报,2011,24(4):479-483. 被引量:2
  • 9De SOUZA Elder, MARCELO Lyra, IRAM Gleria. Critical bifuracations and chaos in a delayed nonlinear model for theimmune response[-J]. Chaos,Solitons and Fraetals,2009,42(4):2 494-2 501.
  • 10COOKE K L, Van Den DRIESSCHE P. On zeros of some transcendental equationsl-J']. Funkcialaj Ekvacioj, 1986,29, 77-90.

二级参考文献26

  • 1刘兵,陈兰荪,张玉娟.基于IPM策略的捕食与被捕食系统的动力学性质[J].工程数学学报,2005,22(1):9-14. 被引量:12
  • 2张树文,陈兰荪.具有脉冲效应和综合害虫控制的捕食系统[J].系统科学与数学,2005,25(3):264-275. 被引量:30
  • 3孙树林,原存德.捕食者具有流行病的捕食-被捕食(SI)模型的分析[J].生物数学学报,2006,21(1):97-104. 被引量:51
  • 4BARCLAY H J. Models for pest control using predator release, habitat management and pesticide release in combina- tion[J]. J Appl Ecol, 1982,19 : 337-348.
  • 5XIAO Y N, Van Den BOSCH J. The dynamics of an eco-epidemic model with biological control[J]. Ecol Model, 2003, 168:203-214.
  • 6TANG S Y,CHEN L S. The periodic predator-prey lotka-volterra model with Impulsive effect[J]. J Mech Med Biol, 2002,2(4) :267-296.
  • 7LIU X N,CHEN L S. Complex dynamics of Holling type Lotka-Volterra predator-prey system with impulsive pertur- bations on the predator[J]. Chaos, Solitons and Fraetals, 2003,16 : 311-320.
  • 8NUNDLONLL S,MAILLERET M,GROGNARD F. The effect of partial crop harvest on biological pest control[J]. Rocky Mountain J Math,2008,38(5) : 1 633-1 661.
  • 9LAKSHMIKANTHAM V,BAINOV D D, SIMEONOV P S. Theory of impulsive differential equations[M]. Singa- pore: World Scientific, 1989.
  • 10MUKHERJEE D.Stability analysis of a stochastic model for prey-predator system with disease in the prey[J].Nonlin-ear Analysis Modelling and Control,2003,8(2):83-92.

共引文献5

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部