摘要
设B(H)是复数C上的代数,k∈C非零.运用算子论的方法,证明了双射φ:B(H)→B(H)若满足φ(k(AB*+B*A))=k(φ(A)φ(B)*+φ(B)*φ(A))A,B∈B(H)成立,当且仅当φ为*环同构,或*环反同构,且φ(kA)=kφ(A);若双射φ满足φ(AB*A)=φ(A)φ(B)*φ(A),当且仅当φ为*同构,或共轭*同构,或*反同构,或共轭*反同构.
Let B(H) be a algebra on complex number space C, k ∈ C is nonzero. Using some methods of operator theory, it is proved that, if Ф:B(H)→B(H) is a bijective map and satisfies Ф(k(AB^*'+B^*A))=k(Ф(A)Ф(B)^*+Ф(B)^*Ф(A)) for every pair A, B∈B(H) if and only if Ф is a * -isomorphism, or a * -anti-isomorphism;if Ф is a bijective map and satisfies Ф(AB* A)=Ф(A)Ф(B) * Ф(A) for every pair A, B∈B(H) if and only if Ф is a * -isomorphism, or a conjugate * -isomorphism, or a * -anti-isomorphism, or a conjugate *-anti-isomorphism.
出处
《纺织高校基础科学学报》
CAS
2013年第1期65-67,共3页
Basic Sciences Journal of Textile Universities
基金
陕西省教育厅自然科学研究计划资助项目(2012JK0873)