期刊文献+

轴径向支架安放角对灯泡贯流式水轮发电机通风结构的影响 被引量:1

Placement angle effect of axial and radial stent on ventilation structure in bulb tubular turbine
下载PDF
导出
摘要 为了研究支架结构形式对灯泡贯流式水轮发电机轴径向通风结构散热效果的影响,根据风力机工作原理,设计了前弯式支架通风结构,在增加径向安放角的基础上,调整轴向安放角,应用流体流动理论进行分析,对模拟数据进行试验可靠性验证.结果表明:合理的增加轴径向安放角能提高灯泡贯流式水轮发电机组的散热和单面进风的径向进风;径向安放角为15°时比径向安放角为0°时绕组的最高温度低3.4%;在径向安放角为15°,轴向安放角为20°时比轴向安放角为40°时绕组的最高温度低5.0%.径向安放角15°,轴向安放角20°时,散热效果最佳,使得整机主要产生热量部件发电机的温度不超过55℃. According to the principle of wind turbine, a forward inclined support was designed on light bulb tubular turbine to study the heat dissipation effect of axial or radial direction ventilation structure. Based on the increasing of radial angle, the axial angle was changed to verify the simulation data by relia- bility verification tests. The results show that a reasonable increase of radial or axial angle can improve the heat dissipation performance and single-sided radial air intake. The maximum temperature of winding with radial angle of 15° is 3.4% lower than that with radial angle of 0°. The maximum temperature of winding with axial angle of 20° is 5.0% lower than that with axial angle of 40° when the radial angle is 15°. The optimal heat dissipation performance can be achieved with radial angle of 15° and axial angle of 20°,and the temperature of main heating components of electric generator in whole machine can be con- trolled not more than 55 ℃.
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期281-286,共6页 Journal of Jiangsu University:Natural Science Edition
基金 甘肃省自然科学基金资助项目(1208RJZA293)
关键词 水轮发电机 灯泡贯流式 轴径向支架安放角 通风结构 数值模拟 turbine generator bulb tubular structure numerical simulation placement angle of axial and radial stent ventilation
  • 相关文献

参考文献3

二级参考文献11

  • 1曹国宣.水内冷汽轮发电机转子温度场计算[J].电工技术学报,1993,8(1):18-21. 被引量:6
  • 2Friedrichs J, Kosyna G. Rotating cavitation in a centrifugal pump impeller of low specific speed [ J ]. Journal of Fluids Engineering, 2002, 124 : 356 - 361.
  • 3Spence R, Amaral-Teixeira J. Investigation into pressure pulsations in a eentritugal pump using numerical methods supported by industrial tests [J]. Computers & Flaids, 2008, 37:690 - 704.
  • 4Barrio R, Parrondo J, Blaneo E. Numerical analvsis of the unsteady flow in the nearfongue region in a volute-type centrifugal pump for different operating points [J]. Computers & Fluids, 2010,39 : 859 - 870.
  • 5Duplaa S,Coutier-Delgosha O, Dazin A, et al. Experimental study of a cavitating centrifugal pump during tasl startups [J]. Journal of Fluid Engineering, 2010, 132 (2) :021301 - 1 - 12.
  • 6Spence R, Amaral-Teixeica J. A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifund pump[J]. Computers & Fluids, 2009,38 : 1243 - 1257.
  • 7Moscato F, Colacino F M,Arabia M,et al. Pressure pulsation in roller pumps: a validated lumped parameter model[J]. Medical Engineering & Physics, 2008,30: 1149 - 1158.
  • 8Lucius A, Brenner G. Unsteady CFD simulations of a pump in part load conditions using scale-adaptive simulation [ J ]. International Journal of Heat and Fluid Flow, 2010,31:1113 - 1118.
  • 9袁建平,付燕霞,刘阳,张金凤,裴吉.基于大涡模拟的离心泵蜗壳内压力脉动特性分析[J].排灌机械工程学报,2010,28(4):310-314. 被引量:29
  • 10温嘉斌,孟大伟,周美兰,鲁长滨.大型水轮发电机通风发热场模型研究及通风结构优化计算[J].电工技术学报,2000,15(6):1-4. 被引量:22

共引文献31

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部