摘要
在 Total-Lagrange坐标下;推导了满足离散 Kirchhoff假定的三角形板壳单元在板壳结构几何非线性有限元分析中全部的有限元列式,并以显式表示。各种数值算例表明,该单元的精度高.收敛快,单元的求解未知数少,满足同样精度所需单元数少,可以适用子各种复杂形状板壳结构的几何非线性有限元分析。
An efficient finite element for geometric nonlincar analysis of plate and shell structures is presented. All explicit formulations of “discrete Kirchhoff” element to total-Lagrange coordinate systems are derived. The numerical examples of various types show that for geometric nonlinear analysis of plate and shell structures this element has rapid convergence and good accuracy with a much smaller number of elements.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
1991年第6期639-646,680,共9页
Journal of Dalian University of Technology
关键词
板壳结构
非线性
有限元法
nonlinear structural analysis
finite element method
stiffness matrix/discrete Kirchhoff