摘要
研究了在实Hilbert空间中,求解非线性不适定问题的方法.通过对修正的三阶牛顿法进行Tikhonov正则化,得到新的迭代格式.在适当的条件下选取正则化参数,应用广义偏差准则,得出该迭代格式是单调的且是收敛性的.结果表明,此迭代格式可应用于求解非线性不适定问题.
A method for solving nonlinear ill-posed problems in real Hilbert space is mainly studied. Through Tikhonov regularizing the modified Newton method,an iterative form is obtained. The regularization parameter is chosen under suitable conditions, and the generalized error criterion is used, so that the iterative scheme is monotone and convergence is obtained. From the result it can be seen that the nonlinear ill-posed problems can be solved by using the iterative scheme.
出处
《西安工程大学学报》
CAS
2013年第2期248-252,共5页
Journal of Xi’an Polytechnic University
关键词
非线性不适定问题
正则化
收敛性
nonlinear ill-posed problems
regularization
convergence