期刊文献+

解非线性不适定问题的一种正则化方法

A regularization method for solving nonlinear ill-posed problems
下载PDF
导出
摘要 研究了在实Hilbert空间中,求解非线性不适定问题的方法.通过对修正的三阶牛顿法进行Tikhonov正则化,得到新的迭代格式.在适当的条件下选取正则化参数,应用广义偏差准则,得出该迭代格式是单调的且是收敛性的.结果表明,此迭代格式可应用于求解非线性不适定问题. A method for solving nonlinear ill-posed problems in real Hilbert space is mainly studied. Through Tikhonov regularizing the modified Newton method,an iterative form is obtained. The regularization parameter is chosen under suitable conditions, and the generalized error criterion is used, so that the iterative scheme is monotone and convergence is obtained. From the result it can be seen that the nonlinear ill-posed problems can be solved by using the iterative scheme.
出处 《西安工程大学学报》 CAS 2013年第2期248-252,共5页 Journal of Xi’an Polytechnic University
关键词 非线性不适定问题 正则化 收敛性 nonlinear ill-posed problems regularization convergence
  • 相关文献

参考文献6

  • 1HANK M. A regularization Levenberg Marquardt scheme, with application to inverse groundwater filtration problems [J]. Inverse Problems, 1997,13 (1) : 79-95.
  • 2MARTIN FUNHTY. A new Tikhonov regularization method[J]. Numerical Algorithms, 2012,59 (3) ..433-445.
  • 3JIN Q N. A convergence analysis of the iteratively regularized Gauss Newton method under the lips chitz condition[J]. Inverse Problems, 2008,24 (4) : 1-16.
  • 4KALTENBACHER B. Some Newton-type methods for the regularization of nonlinear ill-posed problems[J]. Inverse Problems, 1997,13 .. 729-753.
  • 5BISSANTZ N, HOHAGE T, MUNK A. Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise[J]. Inverse Problems, 2004,20(6)..1 773-1 778.
  • 6MARIA G G,ALESSANDRA P,ALDO P. A two-stage method for nonlinear inverse problems[J]. Journal of Compu- tational and Applied Mathematics, 2007,198 : 471-482.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部