期刊文献+

基于规则Sierpinski地毯结构模型的CaO孔道流动特性模拟 被引量:2

CaO Pore Fluidization Simulation Based on the Inerratic Sierpinski Structure Model
下载PDF
导出
摘要 基于规则分形结构—Sierpinski地毯结构建立二维分形孔道模型,采用SIM-PLEC算法和k-ε模型,应用Fluent 6.3模拟孔道内流体流动规律,包括流场内速度、压力、气含率和流量,为研究真实CaO孔道内流体流动提供数据。模拟结果表明,气体在Sierpinski地毯结构中流动具有分形特性、对称性和随机性;进口气速与总压降成线性关系;进口气速不影响流场内压力、速率分布;在障碍物后方形成了空气的漩涡,气速越大,漩涡范围越小,且形状趋于规则圆形;不同级数的地毯模型压力、速率分布一致,且2级模型是3级模型的一部分。 2-D fractal pore model was built based on the inerratic fractal structure-Sier- pinski carpet structure. The fluid flow characteristics including gas velocity, pressure, gas holdup and flow rate in the pore were simulated by Fluent 6.3 and SIMPLEC algo- rithm and κ-ε model. These investigations can provide some reference dates for the fluid flow in the real CaO pore. The simulation results show that the gas flow has fractal characteristics, symmetry and random in the Sierpinski carpet structure. It appears line- ar relationship between inlet gas-velocity and total pressure drop. The inlet gas-velocity can not affect the pressure distribution and the speed distribution in the flow field. There are some vortexs of air behind the obstacles, the bigger of the inlet gas-velocity, the smaller of the vortex range, and the shape tends to inerratic round. The pressure distribution or the speed distribution was consistent with different level models, and the 2 level model is a part of the 3 level model.
出处 《青岛科技大学学报(自然科学版)》 CAS 北大核心 2013年第2期152-159,共8页 Journal of Qingdao University of Science and Technology:Natural Science Edition
关键词 Sierpinski地毯结构 分形 CaO孔道 流态化模拟 Sierpinski structure model fractal CaO pore fluidization simulation
  • 相关文献

参考文献8

二级参考文献43

  • 1帕坦卡.导热与流体流动的数值计算[M].北京:科学出版社,1984..
  • 2黄筠.分形物理学[M].北京大学内部资料,..
  • 3[1]Mandebort B B. The fractal geometry of nature[M]. New York, W. H. Freeman.1983,15-104.
  • 4[2]Avnir D, Farin D, Pfeifer P. Molecular fractal surfaces[J].Nature, 1984, 308,261-263.
  • 5[3]Coppens,M-O, Forment,G.F. Diffusion and reaction in a fractal catalyst pore, I Geometrical aspects[J]. Chem. Eng. Sci., 1995, 50,1013-1026.
  • 6[4]Figus,C, Bray Y L, Part M. Heat and mass transfer with phase change in a porous structure partially heated:continuum model and pore network simulations[J]. Inter. J of Heat and Mass Transfer, 1999, 42, 2557-2569.
  • 7[5]Pascal J P. On nonlinear diffusion in fractal structures[J]. Phys. A, 1994,208, 351-358.
  • 8[6]Stephenson, J. Some non-linear diffusion equations and fractal diffusion[J]. Phys. A, 1995, 222, 234-247.
  • 9[7]Avnir D, Farin D, Pfeifer P. A discussion of some aspects of surface fractality and of its determination[J]. New J. Chem. 1992, 16. 439-449.
  • 10[8]Friesen W I, Laidlaw W G.. Porosimetry of fractal surfaces[J]. J Colloid Interface Sci, 1993,160, 226-235.

共引文献56

同被引文献9

  • 1MANDELBORT B B. The fractal geometry of nature IMP. San Francisco: W. H. Freeman, 1982.
  • 2CHEN Y P, CHENG P. Heat transfer and pressure drop in fractal tree-like micro-channel nets [ J ]. Heat and Mass Transfer, 2002, 45( 13 ) : 2043 -2068.
  • 3ALER P M. Fractal porous media II1: transversal stokes tlo,v through random and sierpinski carpets J. Transport in Porous Media, 1988, 3 : 85 - 198.
  • 4CA1 J, HUAI X L. Study on fluid-solid coupling heat transfer in fractal porous medium by lattice Bohzmann method J 1. Applied Thermal Engineering, 2010 ( 12 ) : 1-9.
  • 5CHEN Y P, SHEN C Q, LU P F,et al. Role of pore structure on liquid flow behaviors in porous media characterized by fractal geometry [ J ]. Chemical Engi- neering and Processing, 2015 ( 87 ) :75 - 80.
  • 6张喜东,黄护林.圆柱绕流中扰动体强化传热和减阻[J].化工学报,2014,65(2):488-494. 被引量:10
  • 7孙清莉,黄鹏.基于Fluent的圆柱绕流计算分析[J].安徽建筑,2014,21(4):60-61. 被引量:1
  • 8张东辉,石珊,王军,陈宁.串列双圆柱绕流换热特性的数值研究[J].江苏科技大学学报(自然科学版),2014,28(6):563-569. 被引量:7
  • 9张东晖,杨浩,施明恒.多孔介质分形模型的难点与探索[J].东南大学学报(自然科学版),2002,32(5):692-697. 被引量:18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部