期刊文献+

超高温陶瓷复合材料抗热冲击性能影响因素的实验研究 被引量:5

Experimental study on the influential factors of thermal shock resistance of ultra-high temperature ceramic composite materials
下载PDF
导出
摘要 为研究超高温陶瓷复合材料抗热冲击性能的影响因素,自行搭建多参数导电类热防护材料热冲击测试装置,测试导电类材料表面温度响应、升温速率、尺寸效应、压力及气体组分对其抗热冲击性能的影响。针对ZrB2-SiC-石墨(ZSG)典型超高温陶瓷复合材料,通过正交实验获得不同参数下热冲击实验后材料的剩余弯曲强度,并利用极差、方差分析各参数对抗热冲击性能的影响权重及显著性,结果表明表面温度响应,升温速率和尺寸效应具有显著影响,压力和气体组分影响甚微。 In order to study the factors affecting thermal shock resistance of ultra-high temperature ceramic composite materials, a home-made multiparameter thermal shock testing device for conducting thermal protection materials was established to test the impact of factors, such as surface temperature response, the rate of temperature rising, dimensional effect, pressure and gas component of conductive materials, on the thermal shock resistance property. Based on high temperature ceramic material, ZrB2-SiC- graphite (ZSG) for typical, the residual bending strength of specimens was tested after the thermal shock test by the orthogonally designed experiments under different parameters. Then the thermal shock property was analyzed by using range and variance methods to evaluate the weight and significance of the parameters. Results show that the influences of surface temperature response, the rate of temperature rising and dimensional effect are remarkable, while pressure and gas component have little effects.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2013年第2期255-260,共6页 Journal of Solid Rocket Technology
基金 自然科学基金集成项目(91016029)
关键词 超高温陶瓷 抗热冲击 正交实验 影响因素 UHTC thermal shock resistance orthogonal experimental influential factors
  • 相关文献

参考文献2

  • 1王裕,梁军,方国东,等.试样厚度对ZrB:基超高温陶瓷抗热冲击性能的影响[J].材料工程,2008,suppl:248-251.
  • 2韩杰才,胡平,张幸红,孟松鹤.超高温材料的研究进展[J].固体火箭技术,2005,28(4):289-294. 被引量:58

二级参考文献44

  • 1Upadhya K,Yang J-M,Hoffmann W P. Materials for ultrahigh temperature structural applications [ J ]. Am. Ceram.Soc. Bull, 1997,76(12) :51-56.
  • 2William G Fahrenholtz,Gregory E Hilmas. NSF-AFOSR joint workshop on future ultra-high temperature materials [ R].NSF Grant DMR-0403004.
  • 3Bronson A, Ma Y T, Mutso R. Compatibility of refractory metal boride/oxide composites at ultra-high temperatures[J]. J. Electrochem. Soc. ,1992,139( 11 ) :3183-3196.
  • 4Opeka M,Talmy I G, Wuchina E J, Zaykoski J A, Causey S J. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds [ J ]. J. Eur. Ceram. Soc. ,1999,19(13-14) :2405-2414.
  • 5Wang C R, Yang J M, Hoffmann W. Thermal stability of refractory carbide/boride composites [ J ]. Mater. Chem. Phys.,2002,74 ( 3 ): 272-274.
  • 6Hinze J W,TrippW C, Graham H C. High-temperature oxidation behavior of a HfB2 plus 20 v/o SiC composite [ J ]. J.Electrochem. Soc. , 1975,122(9): 1249-1254.
  • 7Tripp W C, Davis H H, Graham H C. Effect of an SiC addition on the oxidation of ZrB2 [ J ]. Ceram. Bull, 1973,52(8) :612-616.
  • 8Levine S R, Opila E J, Halbig M C, Kiser J D, Singh M, Salem J A. Evaluation of ultra-high temperature ceramics for aeropropulsion use [ J ]. J. Eur. Ceram. Soc. , 2002,22 ( 14,15 ) :2757-2767.
  • 9Opeka M M, Talmy I G, Zaykoski J A. Oxidation-based materials selection for 2000℃ + hypersonic aerosurfaces:Theoretical considerations and historical experience [ J ]. J. Mater.Sci. ,2004,39 (19): 5887-5904.
  • 10Goujard S, et al. The oxidation behaviour of two and three dimensional C/SiC thermostructural materials protected by chemical vapour deposition polylayers coatings [ J ]. J. Mater. Sci. ,1994 ,29(20) :6212-6220.

共引文献57

同被引文献83

  • 1廖龙文,曾鹏,陈军燕,郭熠玮,谢丰宇.高超声速飞行器发展困境分析[J].飞航导弹,2019,0(12):22-27. 被引量:7
  • 2李海川,张继沐,潘业峰,徐学军,梁雷,王鹏.CF80钢纤维混凝土遮弹层配制及试验研究[J].工业建筑,2012,42(S1):572-576. 被引量:1
  • 3李秀地 ,郑颖人 ,李列胜 ,石少卿 .长坑道中防护门上的化爆冲击波压力研究[J].后勤工程学院学报,2005,21(2):37-39. 被引量:7
  • 4吴宗汉,许人伍.航天飞机机身上的隔热系统与材料[J].物理通报,2007,28(11):3-6. 被引量:5
  • 5EAKINS E, JAYASEELAN D D, LEE W E. Towardoxidation-resistant ZrB2-SiC ultra high temperature ceramics[J]. Metall Mater Trans A, 2011, 42(4): 878-887.
  • 6XIE C, CHEN M, WEI X, et al. Synthesis and microstructure of zirconium diboride formed from polymeric precursor pyrolysis[J]. J Am Ceram Soc, 2012, 95(3): 866-869.
  • 7KONT1NOS D A, GEE K, PRABHU D K. Temperature constraints at the sharp leading edge of a crew transfer vehicle[C]//AIAA Thermophysics Conference, 35th, Anaheim, 2001.
  • 8LI Q, ZHOU H, DONG S, et al. Fabrication of a ZrC-SiC matrix for ceramic matrix composites and its properties[J]. Ceram lnt, 2012, 38(5): 4379-4384.
  • 9LI H, ZHANG L, CHENG L, et al. Fabrication of 2D C/ZrC-SiCcomposite and its structural evolution under high-temperature treatment up to 1 800 .C[J]. Ceram Int, 2009, 35(7): 2831-2836.
  • 10JI Z, YE L, TAO X, et al. Synthesis of ordered mesoporous ZrC/C nanocomposite via magnesiothermic reduction at low temperature[J]. Mater Lett, 2012, 71: 88-90.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部