期刊文献+

柯恩达效应对涡轮叶栅气动性能及流场的影响 被引量:4

Conanda effect on aerodynamic performance and flow field of turbine cascade
原文传递
导出
摘要 以某实际燃气轮机涡轮进口导向器叶栅为研究对象,在出口为高亚声速及超声速条件下,对具有不同柯恩达表面的环量控制叶栅进行二维数值模拟,通过对比分析叶栅的气动性能和流场细节,探讨了柯恩达效应在涡轮叶栅中的作用机理.结果表明:当叶栅出口马赫数为0.60时,射流对主流有很好的携带作用,损失小于原型叶栅;叶栅出口马赫数增加到0.85时,射流仍有较强的携带主流折转的能力;当叶栅出口为超声速时,在初始阶段小曲率的柯恩达表面上,由于激波的作用,射流向流道中心折转并提前脱离壁面,初始阶段大曲率的柯恩达表面射流附壁较好,但由于叶片吸力面与射流口之间圆角的作用,射流与主流掺混不理想. Based on a real turbine inlet guide vane,the two-dimensional flow field of a turbine cascade was simulated by using the circulation control blade profile with different Coanda surfaces.At the cascade exit being high subsonic and supersonic conditions,the aerodynamic performance and the detailed flow fields of different blade profiles were explored.The mechanism of Coanda effect on turbine cascade was discussed.When Mach number at the cascade exit was 0.60,the jet entrained the mainstream well and the loss reduced.When Mach number at the cascade exit increased to 0.85,the ability of the jet carrying the mainstream was still fine.When the cascade exit was at supersonic flow condition,on the Coanda surface with a small curvature in front,the jet turmed to the center of the flow channel and detached the wall in advance on account of the shock wave.On the Coanda surface with a large curvature in front,the jet adhered to the blade quite well.However,it did not mix with the mainstream for good due to the fillet between the jet exit and the suction surface.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2013年第3期659-665,共7页 Journal of Aerospace Power
基金 国家自然科学基金(50876023) 高等学校博士学科点专项基金(200802130017)
关键词 涡轮叶栅 柯恩达效应 数值模拟 柯恩达表面曲率 马赫数 射流参数 turbine cascade Coanda effect numerical simulation curvature of Coanda surface Mach number jet parameters
  • 相关文献

参考文献15

  • 1Wood N J,Nielsen J N.Circulation control airfoils past,present,future[R].AIAA 85-0204,1985.
  • 2Abramson J,Rogers E O.High-speed characteristics of circulation control airfoils[R].AIAA 83-0265,1983.
  • 3Englar R J,Huson G G.Development of advanced circulation control wing high lift airfoils[R].AIAA 83-1847,1983.
  • 4Rogers E O.Development of compressible flow similarity concepts for circulation control airfoils[R].AIAA 87-0153,1987.
  • 5Slomski J F,Gorski J J,Miller R W,et al.Numerical simulation of circulation control airfoils as affected by different turbulence models[R].AIAA-2002-0851,2002.
  • 6Liu Y,Sankar L N.Computational evaluation of controlling flap edge vortex and tip vortex effects with circulation control technique [R].AIAA-2007-0473,2007.
  • 7王春雨,孙茂.多喷口高效能厚翼的研究[J].力学学报,1999,31(5):611-617. 被引量:2
  • 8王春雨,孙茂.多喷口环量控制翼型流动的研究[J].空气动力学学报,1999,17(4):378-383. 被引量:4
  • 9Lord W K,MacMartin D G,Tillman G.Flow control opportunities in gas turbine engines [R].AIAA-2000-2234,2000.
  • 10Hill H E,Ng W F,Vlachos P P,et al.2D CFD studies using different turbulence models of a circulation control inlet guide vane[R].ASME Paper GT-2007-28058, 2007.

二级参考文献51

  • 1韩振兴,末永洁,刘石.吹风比对气膜冷却效率影响的实验研究[J].航空学报,2004,25(6):551-555. 被引量:8
  • 2刘晶昌,孙茂,吴礼义.一种适于复杂形状物体绕流计算的网格生成方法[J].水动力学研究与进展(A辑),1995,10(5):540-545. 被引量:4
  • 3王春雨.多喷口环量控制翼型流动的研究:博士学位论文[M].北京:北京航空航天大学,1997,5..
  • 4王春雨.多喷口环量控制翼型流动的研究:博士论文[M].北京:北京航空航天大学,1997,5..
  • 5Gritsch M,Schulz A,Wittig S. Adiabatic wall effectiveness measurements of film cooling holes with expanded exits[J]. ASME Journal of Turbomachinery, 1998,120 : 549 -556.
  • 6Gritsch M, Colban W, Schar H. Effect of hole geometry on the thermal performance of fan shaped film cooling holes[J]. ASME Journal of Turbomachinery, 2005, 127: 718-725.
  • 7Taslim M E, Khanicheh A. Film effectiveness down- stream of a row of compound angle film holes[J]. Journal of Heat Transfer, 2005,127:434-440.
  • 8Lee H W, Park J J, Lee J S. Flow visualization and film cooling effectiveness measurements around shaped holes with compound angle orientations [J]. Heat and Mass Transfer, 2002,45:145- 156.
  • 9Lu Y, Dhungel A, Ekkad S V. Effect of trench width and depth on film cooling from cylindrical holes embeded in trenches[R]. ASMEGT-2007- 27388,2007.
  • 10Na S, Shih T I P. Increasing adiabatic film cooling effectiveness by using an upstream ramp[J]. ASME Journal of heat transfer, 2007,129:464-471.

共引文献36

同被引文献71

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部