期刊文献+

两族渐近非扩张非自映射的收敛定理 被引量:1

Convergence Theorems for Two Finite Families of Asymptotically Nonexpansive Nonself-Mappings
下载PDF
导出
摘要 研究一致凸Banach空间中两映射族的公共不动点逼近问题.构造关于两族渐近非扩张非自映射的有限步迭代序列,并在适当条件下,证明了该序列收敛到公共不动点的一些强弱收敛定理. In this paper, the common fixed points of two finite families of mappings are studied in real uniformly convex Banach spaces. A finite-step iteration process defined by two finite families of asymptotically nonexpansive nonself-mappings is introduced, and the strong and weak convergence theorems for this scheme are proved. The results presented improve and extend some relevant results,in recent literature.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期95-100,共6页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10972151) 江苏省研究生培养创新工程(CXZZ11_0950) 苏州科技学院研究生科研创新计划(SKCX11S_054)
关键词 一致凸BANACH空间 渐近非扩张非自映射 公共不动点 有限步迭代序列 uniformly convex Banach space asymptotically nonexpansive nonself-mapping common fixed point finite-step iteration process
  • 相关文献

参考文献4

  • 1CHIDUME C E, OFOEDU E U, ZEGEYE H. Strong and Weak Convergence Theorems for Asymptotically Nonexpan- sire Mappings [J]. J Math Anal Appl, 2003, 280(2) : 364-374.
  • 2CHEN Wei-xu, GUO Wei-ping. Convergence Theorems for Two Finite Families o{ Asymptotically Nonexpansive Map pings [J]. Math Computer Modelling, 2011, 54(5-6): 1311-1319.
  • 3OSILIKE M O, UDOMENE A. Demiclosedness Principle and Convergence Theorems for Strictly Pseudo-Contractive Mappings ofBrowder-PetryshynType[J]. J Math AnalAppl, 2001, 256(2): 431-445.
  • 4SITTHIKUL K, SAEJUNG S. Convergence Theorems for a Finite Family of Nonexpansive and Asymptotically Nonex- pansive Mappings [J]. Acta UnivPalack Olomuc MathAppl, 2009, 48(1): 139-152.

同被引文献11

  • 1WEN Dao-jun.StrongConvergenceTheoremsforEquilibrium Problemsandk-StrictPseudocontractionsin HilbertSpaces[EB/OL][2012-10-20].http://www.hindawi.com/journals/aaa/2011/276874/.
  • 2GOEBELK,KIRK W A.TopicsinMetricFixedPointTheory[M].Cambridge:CambridgeUniversityPress,1990.
  • 3XU Hong-kun.ViscosityApproximationMethodsforNonexpansiveMappings[J].JMathAnalAppl,2004,298(1):279-291.
  • 4MARINOG,XU Hong-kun.AGeneralIterativeMethodforNonexpansiveMappingsinHilbertSpaces[J].JMathAnalAppl,2006,318:43-52.
  • 5ZEGEYEH,SHAHZADN.StrongConvergenceofanIterativeMethodforPseudo-ContractiveandMonotoneMappings[J].JGlobOptim,2012,54:173-184.
  • 6YAOYong-hong,CHENRu-dong,YAOJC.StrongConvergenceandCertainControlConditionsforModifiedMannIteration[J].NonlinearAnal,2008,68:1687-1693.
  • 7ZEGEYEH.AnIterativeApproximationforaCommonFixedPointofTwoPseudo-ContractiveMappings[EB/OL][2012-10-20].http://www.hindawi.com/isrn/mathematical.analysis/2011/621901/.
  • 8XU Hong-kun.AnIterativeApproachtoQuadraticOptimization[J].JOptimTheoryAppl,2003,116:659-678.
  • 9闻道君,邓磊.渐近非扩张映射的粘滞逼近方法[J].西南师范大学学报(自然科学版),2010,35(3):37-40. 被引量:7
  • 10龚黔芬,闻道君.非凸变分不等式和Wiener-Hopf方程的逼近方法[J].西南师范大学学报(自然科学版),2012,37(2):34-37. 被引量:4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部