摘要
研究一致凸Banach空间中两映射族的公共不动点逼近问题.构造关于两族渐近非扩张非自映射的有限步迭代序列,并在适当条件下,证明了该序列收敛到公共不动点的一些强弱收敛定理.
In this paper, the common fixed points of two finite families of mappings are studied in real uniformly convex Banach spaces. A finite-step iteration process defined by two finite families of asymptotically nonexpansive nonself-mappings is introduced, and the strong and weak convergence theorems for this scheme are proved. The results presented improve and extend some relevant results,in recent literature.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第4期95-100,共6页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(10972151)
江苏省研究生培养创新工程(CXZZ11_0950)
苏州科技学院研究生科研创新计划(SKCX11S_054)
关键词
一致凸BANACH空间
渐近非扩张非自映射
公共不动点
有限步迭代序列
uniformly convex Banach space
asymptotically nonexpansive nonself-mapping
common fixed point
finite-step iteration process