期刊文献+

晶粒尺寸对1 MeV电子在金属Ni中能量沉积的影响 被引量:1

Effect of grain size on energy deposition process in Ni metal during 1 MeV electron irradiation
原文传递
导出
摘要 采用脉冲电沉积方法制备出高致密、高质量的纳米晶Ni,并对其密度、组织成分和微观结构进行了表征.利用高能粒子加速器产生的1 MeV高能电子为辐照源,研究高能电子在纳米晶Ni和常规粗晶Ni中的能量损失.通过辐照过程中放置的吸收剂量片来准确表征其电子的能量沉积.结果表明,晶粒尺寸对高能电子在材料中的能量沉积有明显的影响, 1 MeV电子在穿过一定厚度的金属Ni后,在晶粒尺寸细小的纳米晶Ni中测得总的吸收剂量较大,证明了高能电子在纳米材料中的总能量沉积较小,从而表现出纳米材料抗辐照的优异性能. The high performance nano-crystal Ni material was prepared by the pulse electrodeposition process; the intensity, composition and the microscopic structure of the nano-crystal Ni material were investigated by various measurements. In this paper, the 1 MeV electron was chosen as the irradiation source to investigate the energy loss of high energy electron in the nano-crystal Ni material and conventional bulk Ni material, and the energy deposition process during the electron irradiation was measured by the absorbed dose tablets. The results show that the grain size affects the energy loss process during the 1MeV electron irradiation seriously. The absorbed dose of 1 MeV electron in the nano-crystal Ni material is lower than that in the common Ni material with the same thickness, which indicates that the energy deposition of high energy electron in nano-crystal metal is lower than that in the conventional bulk metal, and the nano-crystal metal has an advantage of radiation resistance.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第9期84-90,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11205038) 中国博士后科学基金(批准号:2012M510951)资助的课题~~
关键词 高能电子 纳米金属 辐射损伤 high energy electron nano-material radiation damage
  • 相关文献

参考文献2

二级参考文献22

  • 1[1]Bedingfield K,Leach R and Alexander M.Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment.NASA Reference Publication-1390,August 1996
  • 2[2]Russell C.The solar wind interaction with the Earth's magnetosphere:a tutorial[J].IEEE Trans.on Plasma Science,2000,28(6):1818-1830
  • 3[3]Mullen E,Ginet G,Gussenhoven M,et al.SEE relative probability maps for space operations[J].IEEE Trans.Nucl.Sci.,1998,45(6):2954-2963.
  • 4[4]Wilson J,Town,nd L,Schimmerling W,et al.Transport Methods and Interactions for Space Radiations.Reference Publication-1257,Dec.1991
  • 5[5]Shaneyfelt M,Schwank J,Fleetwood D,et al.Annealing behavior of linear bipolar devices with enhanced low-dose-rate sensitivity[J].IEEE Trans.Nucl.Sci.,2004,51(6):3172-3177
  • 6[6]Dussault H,Howard J,Block R,et al.High-energy heavy-Ion-induced charge transport across multiple junctions[J].IEEE Trans.Nucl.Sci.,1995,42(6):1780-1788
  • 7[8]Koga R,and Kolasinski W.Heavy ion induced snapback in CMOS devices[J].IEEE Trans.Nucl.Sci.,1989,36(6):2367-2374
  • 8[9]Koga R,Penzin S,Crawford K,et al.Single event functional interrupt (SEFI) sensitivity in microcircuits[C]//IEEE RADECS,1997
  • 9[10]Adell P,Schrimpf R,Barnaby H,et al.Analysis of single-event transients in analog circuits[J].IEEE Trans.Nucl.Sci.,2000,47(6):2616-2623
  • 10[11]Adolphsen J,Barth J,and Gee G.First observation of proton induced power MOSFET burnout in space:the CRUX experiment on APEX[J].IEEE Trans Nucl Sci.,1996,43(6):2921-2926

共引文献127

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部