期刊文献+

修正屏蔽库仑势下二维尘埃等离子体的动力学和结构特性 被引量:5

Dynamical and structural properties of two-dimensional dusty plasma with modified screened coulomb potential
原文传递
导出
摘要 本文考虑等离子体密度分布变化,得到了修正屏蔽库仑势的解析解.数值分析以及分子动力学模拟表明,在常见实验室参数情况下,等离子体密度分布变化引起的屏蔽库仑势修正对二维尘埃等离子体系统的动力学和结构特性影响很小.在极限参数情况下,本模型的计算结果表明二维尘埃等离子体系统的扩散能力明显降低,并且系统组态呈圆形分布.此外。 The modified screened Coulomb potential is obtained with considering the changes of plasma number density. Both the analytical results and molecular dynamical simulation show that the modification due to the changes of number density has a minor effect on the dynamical and structural properties of the two-dimensional dusty plasmas. However, further modifications including such as the particle size, ion drag force and pressure force possibly change the profile of the spherically asymmetric Coulomb potential. Motivated by the above speculation, the modified screened Coulomb potential with a set of margin parameters is used to investigate the dynamical and structural properties of the two-dimensional dusty plasmas. It is found that the diffusion of system is extensively decreased, particularly, a circle configuration is formed, which is similar ho the experimental observation of spherical assemble. Additionally, a uniform magnetic field is used to investigate the effects on the dynamical and structural properties of the two-dimensional dusty plasmas.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第9期336-343,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11105077) 中国民航大学基金(批准号:08QD07X)资助的课题~~
关键词 修正屏蔽库仑势 二维尘埃等离子体 分子动力学模拟 modified screened Coulomb potential two-dimensional dusty plasmas molecular dynamical simulation
  • 相关文献

参考文献3

二级参考文献97

  • 1李拥华,徐彭寿,潘海滨,徐法强,谢长坤.GaN(100)表面结构的第一性原理计算[J].物理学报,2005,54(1):317-322. 被引量:14
  • 2[1]Hayashi Y and Tachibana K 1994 Jpn.J.Appl.Phys. 33 1804
  • 3[2]Chu J H and Lin I 1994 Phys.Rev.Lett. 72 4009
  • 4[3]Thomas H, Morfill G E, Demmel V, Goree J, Feuerbacher B and Mohlmann D 1994 Phys.Rev.Lett. 73 652
  • 5[4]Wang L 1994 Acta Phys.Sin. 48 1072 (in Chinese)[王龙 1999 物理学报 48 1702]
  • 6[6]Melzer A, Schweigert V A and Piel A 1999 Phys.Rev.Lett. 83 3194
  • 7[7]Takahashi K, Oishi T, Shimomai K I, Hayashi Y and Nishino S 1998 Phys.Rev. E 58 7805
  • 8[8]Hou L J, Wang Y N and Miskovic Z L 2001 Phys.Rev. E 64 046406
  • 9[9]Hou L J, Wang Y N and Miskovic Z L 2001 Phys.Lett. A 292 129
  • 10[10]Thomas H M and Morfill G E 1996 Nature 379 806

共引文献33

同被引文献132

  • 1Liao Q, Lu P X, Lan P F, Cao W, Li Y H 2008 Phys. Rev. A 77 013408.
  • 2Paulus G G, Lindner F, Walther H, Baltuska A, Goulielmakis E, Lezius M, Krausz F 2003 Phys. Rev. Lett. 91 253004.
  • 3Fu Y Z, Zhao S F, Zhou X X 2012 China. Phys. B 21 113101.
  • 4Zhou Y M, Liao Q, Zhang Q B, Hong W Y, Lu P Y 2010 Opt. Express 18 632.
  • 5Saugout S, Cornaggia C 2006 Phys. Rev. A 73 041406.
  • 6Lan P F, Lu P X, Li F, Li Y H, Yang Z Y 2008 Opt. Express 16 5868.
  • 7Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867.
  • 8Litvinyuk I V, Lee K F, Dooley P W, Rayner D M, Villeneuve D M, Corkum P B 2003 Phys. Rev. Lett. 90 233003.
  • 9Seideman T 1995 J. Chem. Phys. 103 887.
  • 10Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 1990 Phys. Rev. Lett. 64 1883.

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部