期刊文献+

具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应 被引量:1

Effect of cooling of electron-hole plasma in electrically pumped graphene layer structures with split gates
原文传递
导出
摘要 本文研究了室温条件下具有分离门的电诱导石墨烯n-i-p结构中,与电子和空穴注入有关的粒子数反转效应.考虑n区横向电场的屏栅效应,计算了电子-空穴的有效温度与门电压以及光声子的有效温度与门电压的关系,结果表明注入可以导致n区中电子-空穴等离子体显著冷却,直至低于晶格温度;计算了电流-电压特性以及与频率有关的动态电导率,在一定的电压下,动态电导率在太赫兹频段可以为负值.研究表明电子-空穴等离子体冷却能够加强负动态电导率效应,提高实现太赫兹激射的可行性. We have studied the effect of population inversion associated with the electron and hole injection in graphene layer n-i-p structures with split gates at room temperature. Considering the transverse electric field screening of the n-section, we calculated the dependence of the electron-hole effective temperature and optical phonon effective temperature on the gate-voltage. It is shown that the injection can lead to cooling of the electron-hole plasma in n-section to the temperatures lower than the lattice temperature. The current-voltage characteristics, and the frequency-dependent dynamic conductivity are calculated, the frequency-dependent dynamic conductivity can be negative in the terahertz frequency range at a certain applied voltage. The study demonstrates that electron-hole plasma cooling can enhance the negative dynamic conductivity effect and improve the feasibility of terahertz lasing.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第9期377-383,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61001018) 山东省自然科学基金(批准号:ZR2011FM009,ZR2012FM011) 山东科技大学杰出青年科学基金(批准号:2010KYJQ103) 山东省高等学校科技计划项目(批准号:J11LG20) 青岛市科技计划项目(批准号:11-2-4-4-(8)-jch,10-3-4-2-1-jch) 山东科技大学科技创新基金(批准号:YCA120378)资助的课题~~
关键词 石墨烯 n-i-p结构 有效温度 动态电导率 graphene n-i-p structure effective temperature dynamic conductivity
  • 相关文献

参考文献20

  • 1韩鹏昱, 刘伟, 谢亚红, 张希成 2009 物理 38 06.
  • 2Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109.
  • 3Sprinkle M, Suegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de Heer W A, Lanzara A, Conrad E H 2009 Phys. Rev. Lett. 103 226803.
  • 4Orlita M, Potemski M 2010 Semicond. Sci. Technol. 25 063001.
  • 5Ryzhii V, Ryzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114.
  • 6Dubinov A A, Aleshkin V Ya, Mitin V, Otsuji T, Ryzhii V 2011 J. Phys.: Condens. Matter 23 145302.
  • 7Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Aleshkin V Ya 2009 J. Appl. Phys. 106 084507.
  • 8Ryzhii V, Dubinov A A, Otsuji T, Mitin V, Shur M S 2010 J. Appl. Phys. 107 054505.
  • 9Ryzhii M, Ryzhii V 2007 Jpn. J. Appl. Phys. 46 L151.
  • 10Ryzhii V, Ryzhii M, Mitin V, Otsuji T 2011 J. Appl. Phys. 110 094503.

同被引文献34

  • 1Quhe R G, Zheng J X, Luo G F, Liu Q H, Qin R, Zhou J, Yu D P, Nagase S, Mei W N, Gao Z X, Lu J 2012 NPG Asia Materials 4 e6.
  • 2Wu H Q, Linghu C Y, Lü H M, Qian H 2013 Chin. Phys. B 22 098106.
  • 3Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197.
  • 4Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666.
  • 5Yuan W J, Liu A R, Huang L, Li C, Shi G Q 2013 Advanced Materials 25 766.
  • 6Guinea F, Katsnelson M I, Geim A K 2010 Nature Physics 6 30.
  • 7Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2008 Nature Physics 4 532.
  • 8Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A 2010 Phys. Rev. Lett. 105 097401.
  • 9Lu J J, Feng M, Zhan H B 2013 Acta Phys. Sin. 62 014204 (in Chinese).
  • 10Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部