期刊文献+

集对逻辑及其运算定律 被引量:2

Set pair logic and its operation theorems
下载PDF
导出
摘要 解决现行的集对联系函数四则运算中存在的不确定性问题与逻辑谬误.分析联系函数与模糊隶属函数在表达事物之间联系的相似性,借鉴模糊逻辑的基本方法,定义了以联系度为真值形式的集对命题,进而给出集对逻辑的析取、合取、取否运算法则,建立了集对逻辑的基本框架.在此基础之上,分析了集对逻辑运算的七大运算定律:对合律、幂等律、交换律、结合律、分配律、吸收律和摩根律,由此证明集对逻辑运算构成的代数(S,,,)为软代数. To solve the uncertainty problem and logical error in the arithmetic of connection function, the similarity between connection function and fuzzy membership function when they express the links among objects was investigated in this study. Based on the basic methods of fuzzy logic, the set pair proposition which has the value form of connection degree was also defined. Thus, the operation rules, such as disjunction, conjunction, negation, were obtained and the basic frame of set pair Logic is established. Furthermore, the seven rules including involution, idempotent, exchange, combination, distribution, absorption, and Morgan were discussed. It proves that (S,∨,∧,-) is soft algebra.
作者 杨亚锋
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2013年第2期249-252,共4页 Journal of Liaoning Technical University (Natural Science)
基金 河北省自然科学基金资助项目(A2011209046 A2012209030)
关键词 集对分析 联系度 集对逻辑 模糊集合 模糊逻辑 软代数 集对势 不确定性 set pair analysis connection degree set pair logic fuzzy set fuzzy logic soft algebra set pair posture uncertainty
  • 相关文献

参考文献9

二级参考文献84

共引文献73

同被引文献23

  • 1刘刚,刘强.双枝模糊推理框架[J].计算机工程与应用,2004,40(32):102-105. 被引量:5
  • 2刘纪芹,史开泉.双枝模糊集模糊性度量[J].系统工程与电子技术,2007,29(5):732-736. 被引量:2
  • 3ZADEH L A. Fuzzy sets [ J ]. Information and Control, 1965, 8(3): 338-353.
  • 4ATANASSOV K T. Intuitionistic fuzzy sets [ J ]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
  • 5ROBINSON J P.A machine-oriented logic based on the resolution principle[J].J ACM,1965,12(1):23-41.
  • 6XU Yang,RUAN Da,KERRE Etienne E,et al.α-Resolution principle based on lattice-valued propositional logic LP(X)[J].Information Sciences,2000,130:195-222.
  • 7XU Yang,RUAN Da,KERREe Etienne E,et al.α-Resolution principle based on lattice-valued first-order logic LF(X)[J].Information Sciences,2001,132: 221-239.
  • 8XU Yang,LIU Jun,SONG Zhenming,et al.On semantics of L-valued first-order logic Lvft[J].Int J.General Systems,2000,29(1):53-79.
  • 9HE Xingxing,XU Yang,LIU Jun,et al.α-Lock resolution method for a lattice-valued first-order logic[J].Engineering Applications of Artificial Intelligence,2011,24(7):1 274-1 280.
  • 10ZHONG Xiaomei,XU Yang.α-Group semantic resolution method based on lattice-valued propositional logic system LP(X)[J].The Journal of Fuzzy Mathematics,2012,20(4):983-1 000.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部