摘要
数学形态学方法基于集合论思想,能定量地描述图像的形状结构,目前已广泛应用于图形图像处理领域,是进行几何形态分析的有效方法。本文首先介绍数学形态学的概念和定义,详细分析几类基本的形态学运算,然后研究形态学滤波器的结构和性质,并将其应用于指纹图像的去噪处理,对各个处理步骤以及处理结果进行分析,显示出形态学方法在图像去噪方面的良好性能。
Mathematical morphology method based on the idea of set theory, which can describe the shapes and structures of images quantitatively, and has been widely used in the field of graphics and image processing, it is an effective method for geometric morphological analysis. This paper first introduces the concepts and definitions of mathematical morphology, and analyses several types of basic morphological operations in detail, then studies the structure and property of morphological filters, and applies it to the denoising processing of fingerprint image, after that, each of the processing steps and results are analyzed, showing that the good performance of morphological methods in image denoising.
出处
《计算机与现代化》
2013年第5期90-94,共5页
Computer and Modernization
关键词
数学形态学
图像处理
形态学滤波器
mathematical morphology
image processing
morphological filter