期刊文献+

Moment Lyapunov exponent for three-dimensional system under real noise excitation

Moment Lyapunov exponent for three-dimensional system under real noise excitation
下载PDF
导出
摘要 The pth moment Lyapunov exponent of a two-codimension bifurcation systern excited parametrically by a real noise is investigated. By a linear stochastic transformation, the differential operator of the system is obtained. In order to evaluate the asymptotic expansion of the moment Lyapunov exponent, via a perturbation method, a ralevant eigenvalue problem is obtained. The eigenvalue problem is then solved by a Fourier cosine series expansion, and an infinite matrix is thus obtained, whose leading eigenvalue is the second-order of the asymptotic expansion of the moment Lyapunov exponent. Finally, the convergence of procedure is numerically illustrated, and the effects of the system and the noise parameters on the moment Lyapunov exponent are discussed. The pth moment Lyapunov exponent of a two-codimension bifurcation systern excited parametrically by a real noise is investigated. By a linear stochastic transformation, the differential operator of the system is obtained. In order to evaluate the asymptotic expansion of the moment Lyapunov exponent, via a perturbation method, a ralevant eigenvalue problem is obtained. The eigenvalue problem is then solved by a Fourier cosine series expansion, and an infinite matrix is thus obtained, whose leading eigenvalue is the second-order of the asymptotic expansion of the moment Lyapunov exponent. Finally, the convergence of procedure is numerically illustrated, and the effects of the system and the noise parameters on the moment Lyapunov exponent are discussed.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第5期613-626,共14页 应用数学和力学(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11072107,91016022,and 11232007)
关键词 moment Lyapunov exponent perturbation method real noise diffusion process Fourier series moment Lyapunov exponent perturbation method real noise diffusion process Fourier series
  • 相关文献

参考文献19

  • 1Molcanov, S. A. The structure of eigenfunctions of one-dimensional unordered structures. Math. USSR, Izv., 12(1), 69-101 (1978).
  • 2Arnold, L. A formula connecting sample and moment stability of linear stochastic systems. SIAM Journal of Applied Mathematics, 44(2), 793-802 (1984).
  • 3Arnold, L., Kliemann, W., and Oejeklaus, E. Lyapunov exponents of linear stochastic systems. Lyapunov Exponents, Lecture Notes in Mathematics 1186, Springer-Verlag, Berlin, 85-125 (1986).
  • 4Arnold, L. and Oejeklaus, E. Almost sure and moment stability for linear equations. Lyapunov Exponents, Lecture Notes in Mathematics 1186, Springer-Verlag, Berlin, 129-159 (1986).
  • 5Arnold, L., Doyle, M., and Namachchivaya, S. N. Small noise expansion of moment Lyapunov exponents for two-dimensional systems. Dynamics and Stability of Systems, 12(3), 187-211 (1986).
  • 6Namachchivaya, S. N., van Roessel, H., and Doyle, M. Moment Lyapunov exponent for two coupled oscillators driven by real noise. SIAM Journal of Applied Mathematics, 56(3), 1400--1423 (1996).
  • 7Khasminskii, R. and Moshchuk, N. Moment Lyapunov exponent and stability index for linear conservative system with small random perturbation. SIAM Journal of Applied Mathematics, 58(1), 245-256 (1988).
  • 8Namachchivaya, S. N. Moment Lyapunov exponent and stochastic stability of two coupled oscil?lators driven by real noise. Journal of Applied Mechanics, 68(2), 903-914 (2001).
  • 9Xie, W. C. Moment Lyapunov exponents of a two dimensional system under real noise excitation. Journal of Sound and Vibration, 239(1), 139--155 (2001).
  • 10Xie, W. C. Moment Lyapunov exponents of a two dimensional system under bounded noise para?metric excitation. Journal of Sound and Vibration, 263(3), 593-616 (2003).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部