期刊文献+

基于多核支持向量数据描述的单类分类方法 被引量:4

One-class Classification Method Based on Multi-kernel Support Vector Data Description
下载PDF
导出
摘要 针对异常检测模型中,单核支持向量数据描述存在映射形式单一以及核函数、核参数选择困难的问题,提出一种多核优化组合的支持向量域描述的单类分类方法。在分析多核映射的核空间基础上,建立多核支持向量数据描述模型,以更灵活地描述训练样本在高维特征空间的边界分布情况。采用目标函数的梯度下降法对该模型的多核组合权重进行分步寻优,并引入异常类测试样本来控制和评价分类器的描述精度和推广能力。仿真实验结果表明,该方法具有更好的学习能力和计算效率。 Considering the support vector data descrlpuon information and hard to choose the best kernel and its parameters, the multi-kernel one-class classification with a linear combination of multi-kernel is proposed. The multi-kernel support vector data description model which can descript the data distribution boundary in eigenspace more flexibly is built after analysing the space of multi-kernel mapping. The optimal combination kernels' weight is solved by reduced gradient algorithm. Test dataset which includes abnormal samples is introduced to control and evaluate the description accuracy and expansibility of hyper spherical interface. Experimental results show the method has better learning ability and computing efficiency.
出处 《计算机工程》 CAS CSCD 2013年第5期165-168,173,共5页 Computer Engineering
关键词 模式识别 单类分类 多核学习 支持向量数据描述 异常检测 pattern recognition one-class classification multi-kemel learning support vector data description anomalydetection
  • 相关文献

参考文献11

二级参考文献41

共引文献87

同被引文献46

  • 1朱启兵,杨宝,黄敏.基于核映射稀疏表示分类的轴承故障诊断[J].振动与冲击,2013,32(11):30-34. 被引量:9
  • 2徐勇,杨大鹏,杨健.模式识别中的核方法及其应用.北京:国防工业出版社,2010.
  • 3Lee K,Kim D,Lee D,et al.Improving supportvector data de-scription using local density degree[J].Pattern Recognition,2005,38(10):1768-1771.
  • 4Cha M,Kim J S,Baek J-G.Density weighted support vector data description[J].Expert Systems with Applications,2014,41(7):3343-3350.
  • 5Kim S,Choi Y,Lee M.Deep Learning with Support Vector Data Description[J].Neurocomputing,2015,165:111-117.
  • 6Nguyen P,Tran D.Repulsive-SVDD Classification[C]∥19thPacific-Asia Conference on Advances in Knowledge Discovery and Data Mining.2015.
  • 7K L,DW K,KH L,et al.Density-Induced Support Vector Data Description[J].IEEE Transactions on Neural Networks,2007,18(1):284-289.
  • 8Guo S M,Chen L C,Tsai J S H.A boundary method for outlier detection based on support v-ector domain description[J].Pattern Recognition,2009,42(1):77-83.
  • 9Zhang Y,Chi Z,Li K.Fuzzy multi-class classifier based on support vector data description and improved PCM[J].Expert Systems with Applications,2009,36(5):8714-8718.
  • 10Hu Chen-long,Zhou Bo,Hu Jing-lu.Fast support vector data description training using edge detection on large datasets[C]∥2014 International Joint Conference on Neural Nerworks(IJCNN).IEEE,2014:2076-2182.

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部