期刊文献+

一种改进的量子遗传算法及其应用 被引量:10

An Improved Quantum Genetic Algorithm and Its Application
下载PDF
导出
摘要 基于量子位测量的二进制量子遗传算法,在用于连续问题优化时,频繁的解码运算会降低优化效率。为解决该问题,提出一种改进的量子遗传算法。基于Bloch球面建立搜索机制,使用量子位描述个体,采用泡利矩阵建立旋转轴,通过量子位在Bloch球面上的绕轴旋转实现进化搜索,利用Hadamard门实现个体变异,以避免早熟收敛,使当前量子位沿着Bloch球面上的大圆逼近目标量子位。实例结果表明,该算法在经历大约26步迭代后,绝对误差积分指标值最小为4.122,优化能力优于基于量子位Bloch坐标的量子遗传算法和带精英保留策略的遗传算法。 Due to frequent decoding operations, the efficiency of optimization is severely reduced when the binary Quanm Genetic Algorithm(QGA) based on qubits measure is applied to the continuous space optimization. To solve this problem, an improved QGA is proposed in this paper. In this algorithm, the search mechanism is built based on Bloch sphere. The individuals are expressed with qubits, the axis of revolution is established with Pauli matrix, and the evolution search is realized with the rotation of qubits in Bloch sphere. In order to avoid premature convergence, the mutation of individuals is achieved with Hadamard gates. Such rotation can make the current qubits approximate the target qubits along with the biggest circle on the Bloch sphere. Example results show that the Integral Time Absolute Error(ITAE) value of this algorithm can meet minimum 4.122 after about 26 step iteration, optimization ability is better than the QGA based on quantum bits Bloch coordinates and Genetic Algorithm(GA) with elite reserving strategy.
机构地区 解放军第
出处 《计算机工程》 CAS CSCD 2013年第5期196-199,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61170132) 黑龙江省教育厅科学技术研究基金资助项目(11551015)
关键词 量子遗传算法 全局搜索 Bloch球面搜索 变异处理 旋转矩阵 Quantum Genetic Algorithm(QGA) global search Bloch spherical search variation processing rotation matrix
  • 相关文献

参考文献12

  • 1Shor P W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring[C]//Proc. of the 35th Annual Symp on Foundations of Computer Science. New York, USA: IEEE Computer Society Press, 1994.
  • 2Grover L K. A Fast Quantum Mechanical Algorithm for Database Search[C]//Proc. of the 28th Annual ACM Symposium on Theory of Computing. New York, USA: ACM Press, 1996.
  • 3Narayanan A, Moore M. Quantum Inspired Genetic Algorithm[C]//Proc. of IEEE International Conference on Evolutionary Computation. New York, USA: IEEE Press, 1996.
  • 4Han K H, Kim J H. Quantum-inspired Evolutionary Algorithm for a Class of Combinatorial Optimization[J]. IEEE Transactions on Evolutionary Computation, 2002, 16(6): 580-593.
  • 5Han K H, Kim J H. Genetic Quantum Algorithm and Its Application to Combinatorial Optimization Problem[C]//Proc. of Congress on Evolutionary Computation. New York, USA: IEEE Press, 2000.
  • 6Wang Ling, Tang Fang, Wu Hao. Hybrid Genetic Algorithm Based on Quantum Computing for Numerical Optimization and Parameter Estimation[J]. Applied Mathematics and Computation, 2005, 171 (2): 1141-1156.
  • 7Zhang Gexiang, Jin Weridong, Hu Laizhou. A Novel Parallel Quantum Genetic Algorithm[C]//Proc. of the 4th International Conference on Parallel and Distributed Computing, Applications and Technologies. Chengdu, China: [s. n.], 2003.
  • 8Chen Hui, Zhang Jiashu, Zhang Chao. Chaos Updating Rotated Gates Quantum-inspired Genetic Algorithm[C]// Proc. of the International Conference on Communications, Cuircuits and Systems. Chengdu, China: [s. n.], 2004.
  • 9Yang Jun'an, Li Bin, Zhuang Zhenquan. Multi-universe Parallel Quantum Genetic Algorithm and Its Application to Blind Source Separation[C]//Proc. of the International Conference on Neural Networks and Signal Processing. Nanjing, China: [s. n.], 2003.
  • 10李盼池.基于量子位Bloch坐标的量子遗传算法及其应用[J].控制理论与应用,2008,25(6):985-989. 被引量:29

二级参考文献7

  • 1SHOR P W. Algorithms for quantum computation: Discrete logarithms and factoring[C]//Proceedings of the 35th Annual Symposium on Foundations of Computer Science. New York, USA: IEEE Computer Society Press, 1994, 11:124 - 134.
  • 2GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceedings of the 28th annual ACM Symposium on Theory of Computing . New York, USA: ACM Press, 1996, 6:212 - 219.
  • 3NARAYANAN A, MOORE M. Quantum inspired genetic algorithm[C]//Proceedings of IEEE International Conference on Evolutionary Computation. New York, USA: IEEE Press, 1996, 5:61 - 66.
  • 4HANK H, KIM J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Transactions on Evolutionary Computation, 2002, 16(6): 580 - 593.
  • 5HAN K H, KIM J H. Genetic quantum algorithm and its application to combinatorial optimization problem[C]//Proceedings of the 2000 Congress on Evolutionary Computation. New York, USA: IEEE Press, 2000, 7: 1354- 1360.
  • 6YANG J A, LI B, ZHUANG Z Q. Multi-universe parallel quantum genetic algorithm its application to blind-source separation[C]//Proceedings of IEEE International Conference on Neural Networks & Signal Processing. New York, USA: IEEE Press, 2003, 12:393 - 398.
  • 7张葛祥,李娜,金炜东,胡来招.一种新量子遗传算法及其应用[J].电子学报,2004,32(3):476-479. 被引量:122

共引文献28

同被引文献99

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部