期刊文献+

参数变化对简支斜板屈曲承载力的影响规律 被引量:3

Influence Law of Varying Parameters on Buckling Bearing Capacity of Simply-Supported Skew Plates
下载PDF
导出
摘要 针对斜向肋箱梁结构中的局部屈曲失稳问题,推导斜坐标系下简支边的弯矩计算公式、纵向面内载荷作用下斜板的屈曲平衡微分方程,将调和微分求积法和边界融入法相结合,给出调和边界融入微分求积法求解简支斜板局部稳定性的具体方法.最后以单向轴压或剪应力作用下的简支斜板为例,研究载荷变化系数、斜板边长比、倾角与屈曲临界载荷之间的关系.结果表明:单向轴压作用下简支斜板屈曲临界载荷随载荷变化系数的增大而增大,随倾角的增大而减小,随边长比的增大先增大后减小再增大;剪应力作用下简支斜板屈曲临界载荷随边长比的增大而增大,随倾角的增大先减小后增大. In order to overcome the local buckling instability of skew plates in box girder, the equations of moment of simply-supported edges in oblique coordinate system and the buckling differential governing equations of skew plates subjected to longitudinal in-plane loads are deduced. Then, by combining the harmonic differential quadra- ture method with the build-in method, a novel method to implement the critical buckling stability of simply-suppor- ted skew plates is proposed. Moreover, by taking the skew plates subjected to uniaxial pressure or shear force as a study sample, the influences of load-varying coefficient, aspect ratio and skew angle on the critical bulking load are investigated. The results show that, when the simply-supported skew plates are subjected to uniaxial pressure, the critical buckling load increases with the increase of load-varying coefficient and with the decrease of skew angle, however, it undergoes a decrease during its increase with the aspect ratio. Moreover, it is found that, when the skew plates are subjected to shear force, the critical buckling load increases with the aspect ratio, and that it first decreases and then increases with the increase of skew angle.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期108-115,共8页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51175442) 西南交通大学中央高校基本科研业务费专项资金资助项目(2010ZT03)
关键词 箱梁 简支斜板 边界融入法 调和微分求积法 屈曲临界载荷 box girder simply-supported skew plate build-in method harmonic differential quadrature method critical buckling load
  • 相关文献

参考文献18

  • 1Lotfi S, Azhari M, Heidarpour A. Inelastic initial local buckling of skew thin thickness-tapered plates with and without intermediate supports using the isoparametric spline finite strip method [ J ]. Thin-Walled Structures, 2011,49 : 1475-1482.
  • 2陈炎,黄小清,马友发.单向轴压下压电矩形薄板的后屈曲问题[J].华南理工大学学报(自然科学版),2003,31(8):45-49. 被引量:3
  • 3Ganapathi M, Prakash T. Thermal buckling of simply supported functionally graded skew plates [ J ]. Composite Structures, 2006,74 ( 2 ) : 247 - 250.
  • 4Xiang Y, Wang C M. Buckling of skew Mindlin plates subjected to in-plane shear loading [ J]. International Journal of Mechanical Sciences, 1995,37 ( 10 ) : 1089- 1101.
  • 5Farajpour A,Shahidi A R, Mohammadi M,et al. Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics [ J ]. Composite Structures, 2012,94 ( 5 ) : 1605-1615.
  • 6Dehghan M,Baradaran G H. Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method [ J]. Applied Mathematics and Computation, 2011,218(6) :2772-2784.
  • 7Wang X W, Shi X D. Differential quadrature buckling analyses of rectangular plates subjected to non-uniform distributed in-plane loadings [ J ]. Thin-Walled Structures, 2006,44 : 837 - 843.
  • 8Wang X W, Gan L F. New approaches in application of differential quadrature method to fourth-order differential equations [ J ]. Communications in Numerical Methods in Engineering, 2005,21:61 - 71.
  • 9阮苗,王忠民.功能梯度斜板的屈曲分析[J].机械工程学报,2011,47(6):57-61. 被引量:5
  • 10李国豪.关于斜交异性斜板的弯曲理论[J].同济大学学报(自然科学版),1997,25(2):121-126. 被引量:7

二级参考文献44

  • 1王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 2张承宗,杨光松.各向异性板结构横向弯曲一般解析解[J].力学学报,1996,28(4):429-440. 被引量:41
  • 3Tiersten H F. Linear piezoelectric plate vibrations [M].New York: Plenum Press, 1969.
  • 4Tzou H S. A linear theory of piezoelectric shell vibrations [J]. J of Sound and Vibration, 1994, 175:77 -88.
  • 5Giurgiutiu V. Review of smart-materials actuation solutions for aeroelastic and vibration control [ J ]. Journal of Intenigent Material Systems and Structures, 2000, 11(7) : 525 - 544.
  • 6Wetherhold R C, Aldraihem O S. Bending and twisting vibration control of flexible structures using piezoelectric materials [J]. The Shock and Vibration Digest, 2001,33(3) :187 - 197.
  • 7Niezrecki C, Brei D, Balakrishnan S, et al. Piezoelectric actuation: state of the art [ J]. The Shock and Vibration Digest, 2001, 33 (4) :269 - 280.
  • 8Giurgiutiu V, Bayoumi A-M E, Nall G. Mechatronics and smart structures: emerging engineering disciplines for the third millennium [J]. Mechatronics, 2002, 12:169 - 181.
  • 9Chandrashekhara K, Bhatia K. Active buckling control of smart composite plates -finite-element analysis [J].Smart Materials and Structure. 1993. 2( 1 ) :31 -39.
  • 10Thompson S P, Loughlan J. The active buckling control of some composite column strips using piezoceramic actuators [J]. Composite Structures, 1995, 32(1/4) : 59 -67.

共引文献11

同被引文献27

  • 1杨荃,陈先霖.轧制带材的瓢曲生成路径[J].北京科技大学学报,1994,16(1):53-57. 被引量:22
  • 2戴杰涛.薄宽带钢板形翘曲与纵向瓢曲变形行为研究[D].北京:北京科技大学,2010.
  • 3王慧军.中厚板轧机板形控制[J].建筑与科技,2013,3:168-169.
  • 4Wistreich J G. Control of strip shape during cold rolling[J]. Journal of the Iron and Steel Institute, 1968,206 ( 12 ) : 1203-1206.
  • 5Poplawski J V, Seccombe D A Jr. Bethlehem' s contribu- tion to the mathematical modeling of cold rolling in tan- dem mills [ J ]. Iron Steel Eng, 1980,57 (9) :47-58.
  • 6Roberts W L. Cold rolling of steel [ M ]. New York: Dekker Inc, 1978.
  • 7Tarnopolskaya T, Gates D J. Analysis of the effect of strip buckling on stability of strip lateral motion with ap- plication to cold rolling of steel [ J ]. Journal of Dynamic Systems, Measurement and Control,2008,130 : 1- 7.
  • 8Renu S,Roshan L.Buckling and vibration of non-homogeneous orthotropic rectangular plates with variable thickness using DQM[J].Advances in Intelligent Systems and Computing,2014,23(4):295-304.
  • 9Jaberzadeh E,Azhari M.Elastic and inelastic local buckling of rectangular plates subjected to shear force using the Galerkin method[J].Applied Mathematical Modelling,2009,33(4):1874-1885.
  • 10Saadapour M M,Azhari M.Buckling of arbitrary quadrilateral plates with intermediate supports using the Galerkin method[J].Computer Methods in Applied Mechanics and Engineering,1998,26(164):297-306.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部