期刊文献+

Time Periodic Electroosmotic Flow of The Generalized Maxwell Fluids in a Semicircular Microchannel 被引量:1

Time Periodic Electroosmotic Flow of The Generalized Maxwell Fluids in a Semicircular Microchannel
原文传递
导出
摘要 Analytical solutions are presented using method of separation of variables for the time periodic electroosmotic flow (EOF) of linear viscoelastic fluids in semicircular microchannel. The linear viscoelastic fluids used here are described by the general Maxwell model. The solution involves analytically solving the linearized Poisson-Boltzmann (P -B) equation, together with the Cauchy momentum equation and the general Maxwell constitutive equation. By numerical computations, the influences of electric oscillating Reynolds number Re and Deborah number De on velocity amplitude are presented. For small Re, results show that the larger velocity amplitude is confined to the region near the charged wall when De is small. With the increase of the Deborah number De, the velocity far away the charged wall becomes larger for large Deborah number De. However, for larger Re, the oscillating characteristic of the velocity amplitude occurs and becomes significant with the increase of De, especially for larger Deborah number.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第5期615-622,共8页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos.11062005, 11202092 Opening Fund of State Key Laboratory of Nonlinear Mechanics, the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region the Natural Science Foundation of Inner Mongolia under Grant Nos.2010BS0107, 2012MS0107 the Research Start up Fund for Excellent Talents at Inner Mongolia University under Grant No.Z20080211 the Natural Science Key Fund of Inner Mongolia under Grant No.2009ZD01
关键词 time periodic EOF generalized Maxwell fluids semi-circular micro-channel oscillating Reynolds number Deborah number 广义Maxwell模型 粘弹性流体 时间周期 半圆形 电渗流 Deborah数 麦克斯韦 本构方程
  • 相关文献

参考文献32

  • 1H.A. Stone, A.D. Stroock, and Ajdari, Ann. Rev. Fluid Mech. 36 (2004) 381.
  • 2T. Bayraktar and S.B. Pidugu, Int. J. Heat Mass Trans- fer. 49 (2006) 815.
  • 3D. Burgreen and F.R. Nakache, J. Phys. Chem. 68 (1964) 1084.
  • 4S. Levine, J.R. Marriott, G. Neale, and N. Epstein, Int. J. Colloid Interface Sci. 52 (1975) 136.
  • 5H.K. Tsao, J. Colloid Interface Sci. 225 (2000) 247.
  • 6Y.J. Kang, C. Yang, and X.Y. Huang, J. Colloid Interface Sci. 253 (2002) 285.
  • 7J.P. Hsu, C.Y. Kao, S.J. Tseng, and C.J. Chen, J. Colloid Interface Sci. 248 (2002) 176.
  • 8C. Yang, D. Li, and J.H. Masliyah, Int. J. Heat Mass Transfer. 41 (1998) 4229.
  • 9S. Arulanandam and D. Li, Colloids Surf. 161 (2000) 89.
  • 10F. Bianchi, R. Ferrigno, and H.H. Girault, Anal. Chem. 72 (2000) 1987.

同被引文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部