期刊文献+

Investigation of Terminal Group Effect on Electron Transport Through Open Molecular Structures

Investigation of Terminal Group Effect on Electron Transport Through Open Molecular Structures
原文传递
导出
摘要 The effect of terminal groups on the electron transport through metal-molecule-metal system has been investigated using nonequilibrium Green's function (NEGF) formalism combined with extended Huckel theory (EHT). Au-molecule-Au junctions are constructed with borazine and BCN unit structure as core molecule and sulphur (S), oxygen (O), selenium (Se) and cyano-group (CN) as terminal groups. The electron transport characteristics of the borazine and BCN molecular systems are analyzed through the transmission spectra and the current-voltage curve. The results demonstrate that the terminal groups modifying the transport behaviors of these systems in a controlled way. Our result shows that, selenium is the best linker to couple borazine to Au electrode and oxygen is the best one to couple BCN to Au electrode. Furthermore, the results of borazine systems are compared with that of BCN molecular systems and are discussed. Simulation results show that the conductance through BCN molecular systems is four times larger than the borazine molecular systems. Negative differential resistance behavior is observed with borazine-CN system and the saturation feature appears in BCN systems.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第5期649-654,共6页 理论物理通讯(英文版)
基金 Supported by DST-FIST Project.financial support from DST-FIST, Government of India
关键词 molecular electronics extended Huckel theory (EHT) nonequilibrium Green’s function (NEGF) quantum transport 电子传输特性 分子结构 非平衡格林函数 影响集 开放式 分子系统 终端 BCN
  • 相关文献

参考文献36

  • 1Q. David Andrews, R.C. Richard, P. Van Duyne, and M.A. Ratner, Chem. Phys. 125 (2006) 174718.
  • 2C. Kergueris, J.P. Bourgoin, D. Esteve, C. Urbina, M. Magoga, and C. Joachim, Phys. Rev. B 59 (1999) 12505.
  • 3H. Hall, J.R. Reimers, and K.J. Silvebrook, Chem. Phys. 112 (2000) 1510.
  • 4J.J. Palacios, A.J. Perez-Jimenez, E. Louis, E. Sanfabian, and J.A. Verges, Phys. Rev. B. 66 (2002) 035322.
  • 5S.T. Pantelides, M. Di Ventra, and N.D. Lang, Physica B 296 (2001) 72.
  • 6K. Stokbro, J. Taylora, M. Brandbygea, J.L. Mozosb, and P. Ordejon, Comp. Mat. Sci. 27 (2003) 151.
  • 7S. Datta, W. Tian, S. Hong, R. Reifenberger, J.L. Hender- son, and C.P. Kubiak, Phys. Rev. Lett. 79 (1997) 2530.
  • 8M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65 (2002) 165401.
  • 9S.N. Yaliraki, A.E. Rotberg, C. Gonzalez, V. Mujica, and M.A. Ratner, J. Chem. Phys. 111 (1999) 6997.
  • 10B.A. Mantooth and P.S. Weiss, P. IEEE 91 (2003) 1785.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部