期刊文献+

基于边缘保护扩散的梯度矢量流测地线活动轮廓模型 被引量:2

Gradient Vector Flow Geodesic Active Contour Model Based on Edge Preserving Diffusion
下载PDF
导出
摘要 针对梯度矢量流测地线活动轮廓(gradient vector flow geodesic active contour,GVFGAC)模型对弱图像边缘敏感,轮廓演化难以进入目标细长的凹部,容易陷入局部极小值的问题,提出了一个基于边缘保护扩散的梯度矢量流测地线活动轮廓模型.在新模型中,采用各向异性扩散方式构建一个新的梯度矢量流场,使活动轮廓能够有效地克服弱边缘的干扰,收敛到期望的边缘位置.实验结果表明,与GVFGAC模型相比,新模型能够获得较好的分割结果,综合性能优于GVFGAC模型. The gradient vector flow geodesic active contour (GVFGAC) model has several shortcomings. That is, it is sensitive to weak edges of an image, and it has poor convergence to the thin-long boundary concavities, as well as it is easy to fall into the local minimum. In order to avoid these shortcomings of the traditional GVFGAC model, a novel gradient vector flow active contour model was developed based on anisotropic diffusion. In the proposed model, a new gradient vector flow was constructed by anisotropic diffusion, which made the active contour be nonsensitive to weak edges, and converge to the desirable positions. Experimental results demonstrated that the proposed model had better segmentation performance than that of the GVFGAC model.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第5期642-645,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61005032) 中央高校基本科研业务费专项资金资助项目(N110604006)
关键词 图像分割 梯度矢量流 测地线活动轮廓 边缘保护扩散 image segmentation gradient vector flow geodesic active contour edge preservingdiffusion
  • 相关文献

参考文献9

  • 1Caselles V, Kimmel R, Sapiro G. Geodesic active contours [ J ]. International Journal of Computer Vision, 1997,22 ( 1 ) : 61 -79.
  • 2Paragios N, Deriche R. Geodesic active regions for motion estimation and tracking [ C ]//Proceedings of the IEEE International Conference on Computer Vision. Kerkyra, 1999 : 688 - 674.
  • 3Bresson X,Esedoglu S, Vandergheynst P, et al. Fast global minimization of the active contour/snake model [ J ]. Journal of Mathematical Imaging and Vision ,2007,28 : 151 - 167.
  • 4Li C M, Xu C Y, Gui C F, et al. Distance regularized level set evolution and its application to image segmentation [ J ]. IEEE Transactions on Image Processing, 2010, 19 ( 12 ) : 3243 - 3254.
  • 5Huang A, Abugharbieh R, Tam R. A hybrid geometric- statistical deformable model for automated 3-D segmentation in brain MRI [J]. IEEE Transactions on Biomedical Engineering, 2009,56 ( 7 ) : 1838 - 1848.
  • 6Paragios N, Mellina-Gottardo O, Ramesh V. Gradient vector flow fast geometric active contours [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26 ( 3 ) : 402 - 407.
  • 7Xu C Y,Prince J. Snakes, shapes, and gradient vector flow [ J ]. IEEE Transactions on Image Processing, 1998,7 ( 3 ) : 359 - 369.
  • 8Xu C Y, Prince J. Generalized gradient vector flow external forces for active contours [ J ]. Signal Processhzg, 1998,71 (2):131 -139.
  • 9Monteil J,Beghdadi A. A new interpretation of the nonlinear anisotropic diffusion for image enhancement [ J ]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1999, 21 (9) :940 -946.

同被引文献20

  • 1罗党,刘思峰.灰色关联决策方法研究[J].中国管理科学,2005,13(1):101-106. 被引量:161
  • 2谭学瑞,邓聚龙.灰色关联分析:多因素统计分析新方法[J].统计研究,1995,12(3):46-48. 被引量:332
  • 3连静,王珂.基于多尺度融合技术的图像边缘检测[J].仪器仪表学报,2007,28(5):853-858. 被引量:10
  • 4邓聚龙.灰色系统的基本方法[M].武汉:华中理工大学出版社,1996.
  • 5马苗,田红鹏,张艳宁.灰色理论在图像工程中的应用研究进展[J].中国图象图形学报,2007,12(11):1943-1951. 被引量:32
  • 6Kass M, Witkin A, Terzopoulos D. Snakes: active contour mod- els [ J ]. International Journal of Computer Vision, 1988,1 (4) : 321-332.
  • 7Caselles V, Kimmel R, Sapiro G. Geometric partial differential equations and image analysis [ M ]. Cambridge : Cambridge U- niversity Press ,2001.
  • 8Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces[ M]. [ s. 1. ] :Springer-Verlag,2002.
  • 9Osher S, Sethion J A. Fronts propagating with curvature de- pendent speed :algorithms based on Hanihon-Jacobi formula- tion[J]. Journal of Computation Physics, 1988,79 ( 1 ) : 12- 49.
  • 10Chan T F,Vese L A. Active contours without edges[J]. IEEE Transactions on Image Processing ,2001,10 (2) :266-277.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部