期刊文献+

广义Rosenau-Burgers方程的一个差分格式

A Finite Difference Scheme for Generalized Rosenau-Burgers Equation
下载PDF
导出
摘要 从动力学系统的实际问题出发,对广义Rosenau-Burgers方程的初边值问题进行了数值研究,揭示了复杂离散动态系统理论中非线性波耗散问题.提出了一个新的两层隐式差分格式,对差分解进行了先验估计,得到了差分解的存在唯一性,并给出了该差分格式的收敛性和稳定性的严格理论.数值实验结果表明该方法简单而有效、稳定性良好.该格式具有理论意义和推广价值. Based on the study of the dynamic systems, the numerical method of the initial- boundary value problem of generalized Rosenau-Burgers equation was discussed and the dissipation problems of nonlinear wave were revealed. A new implicit finite difference scheme of two-level was proposed and the prior estimate of the finite difference solution was obtained. Existence and uniqueness of numerical solutions were derived. It was proved that the finite difference scheme is convergent and stable. Numerical experiments indicated the scheme is efficient and good stability, the proposed scheme has theoretical significance and availability.
机构地区 东北大学理学院
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第5期757-760,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(11071033) 中央高校基本科研业务费专项资金资助项目(090405013)
关键词 广义Rosenau-Burgers方程 有限差分格式 可解性 收敛性 稳定性 generalized Rosenau-Burgers equation finite difference scheme solvability convergence stability
  • 相关文献

参考文献10

  • 1Rosenau P. A quasi-continuous description of a nonlinear transmission line [J]. Physica Scripta, 1986,34:827 - 829.
  • 2Rosenan P. Dynamics of dense discrete systems[J]. Progress of Theoretical Physics, 1988,79 : 1028 - 1042.
  • 3Park M A. On the Rosenau equation [J].Computation and Applied Mathematics, 1990,9 (2) : 145 - 152.
  • 4Liu L P, Mei M. A better asymptotic profile of Rosenau- Burgers equation [J]. Applied Mathematics and Computation,2002,131 ( 1 ) : 147 - 170.
  • 5Liu L P, Mei M, Wong Y S. Asymptotic behavior of solutions to the Rosenau-Burgers equation with a periodic initial boundary[ J]. Nonlinear Analysis ,2007,67 ( 8 ) :2527 - 2539.
  • 6Hu B, Xu Y C, Hu J S. Crank-Nicolson finite difference scheme for the Rosenau-Burgers equation [ J ]. Applied Mathematics and Computation,2008,204 : 311 - 316.
  • 7Khaled O,Faycal A,Talha A,et al. A new conservative finite difference scheme for the Rosenau equation [ J ]. Applied Mathematics and Computation,2008,201 : 35 - 43.
  • 8邵新慧,薛冠宇,沈海龙.Rosenau-Burgers方程的一个新的差分方法[J].上海交通大学学报,2012,46(10):1693-1696. 被引量:3
  • 9周光亚,郑克龙.广义Rosenau-Burgers方程的差分算法[J].数学的实践与认识,2011,41(6):227-234. 被引量:3
  • 10Hu J S, Hu B, Xu Y C. Average implicit linear difference scheme for generalized Rosenau-Burgers equation [ J ]. Applied Mathematics and Computation, 2011,217 : 7557 - 7563.

二级参考文献17

  • 1Liu L, Mei M. A better asymptotic profile of Rosenau-Burgers equation[J]. Appl Math Comput, 2002, 131(1): 147-170.
  • 2Liu L, Mei M, Wong Y S. Asymptotic behavior of solutions to the Rosenau-Burgers equation with a periodic initial boundary[J]. Nonlinear Anal, 2007, 67(8): 2527-2539.
  • 3Mei M. Long-time behavior of solution for Rosenau-Burgers equation (I)[J]. Appl Anal, 1996, 63(3): 315-330.
  • 4Mei M. Long-time behavior of solution for Rosenau-Burgers equation (II)[J]. Appl Anal, 1998, 68(3): 333-356.
  • 5Hu B, Xu Y and Hu J. Crank-Nicolson finite difference scheme for the Rosenau-Burgers equation[J].Appl Math Comput, 2008, 204(1): 311-316.
  • 6Zhou Y. Application of Discrete Functional Analysis to the Finite Difference Method[M]. Inter. Acad. Publishers, Beijing, 1990.
  • 7Browder F E. Existence and uniqueness theorems for solutions of nonlinear boundary value prob- lems[J]. Proc Symp Appl Math, 1965(17): 24-49.
  • 8Rosenau P. A quasi-continuous description of a non- linear transmission line[J]. Physiea Scripta, 1986, 34 (8) : 827-829.
  • 9Rosenau P. Dynamics of dense discrete systems[J]. Progress of Theoretical Physics, 1988, 79 (9) : 1028-1042.
  • 10Park M A. On the Rosenau equation[J]. Computa- tion and Applied Mathematics, 1990, 9(2): 145-152.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部