期刊文献+

无机械调节器的自行车机器人圆周运动实现 被引量:7

Circular Motion Realization of a Mechanical Regulator Free Bicycle Robot
下载PDF
导出
摘要 为了研究无机械调节器自行车机器人的曲线运动平衡能力,给出一种前轮驱动自行车机器人的欠驱动力学模型以及这种机器人在水平面上实现小半径圆周运动的方法。根据几何关系得到车体的转弯半径,以此为基础推导出后轮转角速度和车架航向角速率,进一步采用拉格朗日方程建立系统的力学模型;分析圆周运动下重力矩和向心力矩的动态平衡条件,得到前轮驱动速度、车架横滚角以及车把转角之间的量化关系;基于部分反馈线性化方法,将模型中的欠驱动子系统线性化,设计出圆周运动控制器,并通过动态平衡条件设定车架横滚角和前轮驱动速度期望值来加速算法收敛。仿真控制和样机试验结果表明,控制器可以提供合理的驱动力矩实现自行车机器人的圆周平衡行走,并且给定不同的车架横滚角期望值可以对应得到不同的圆周运动周期,期望值越大,圆周运动周期越短。 In order to deal with balanced control of curvilinear motion for bicycle robot without mechanical regulator, a front-wheel drive bicycle robot is taken into consideration, including its simplified under-actuated dynamics and physical realization for circular motion. According to geometrical relationship, turning radius of the robot is get, and yaw rate of flame together with rotational velocity of rear-wheel are derived. Based on Lagrange formulation, dynamics of the system is established. Considering dynamic balance between gravitational moment and centripetal force moment under circular motion, the mathematical relationship among front-wheel driving velocity, frame roUing angle and front-bar rotational angle is derived. By linearizing the under-actuated firne rolling angle, balanced controller for circular motion is constructed with partial feedback linearization, in which dynamic balance condition is used to set expected values of frame rolling angle and front-wheel driving velocity for accelerating algorithm convergence. Simulation and prototype experiment results show that the proposed controller can realize circular motion with reasonable driving torque, and the expected value of the different rolling angle can lead to different circular motion period, which can be described as the bigger of the expected value is, the smaller of the motion period will be.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第7期141-147,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(61105103)
关键词 自行车机器人 无机械调节器 圆周运动 平衡控制 Bicycle robot Free from mechanical regulator Circular motion Balance control
  • 相关文献

参考文献21

  • 1何广平,陆震,王凤翔.欠驱动机器人动力学运动规划的动态子空间法及控制[J].机械工程学报,2004,40(8):145-149. 被引量:2
  • 2BROCKETT RW, MILLMAN R S, SUSSMANN H J. Differential geometric control theory[M]. Boston: Birkhauser, 1983.
  • 3刘庆波,余跃庆,苏丽颖.欠驱动机器人最优运动轨迹生成与跟踪控制[J].机械工程学报,2009,45(12):15-21. 被引量:7
  • 4YAVIN Y. The derivation of a kinematic model from the dynamic model of the motion of a riderless bicycle[J]. Computers and Mathematics with Applications, 2006, 51: 865-878.
  • 5LEE S, HAM W. Self stabilizing strategy in tracking control of unmanned electric bicycle with mass balance[C]// Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Octoberl2-13, 2002, Lausanne, Switzerland. Lausanne: IEEE, 2002: 2200-2205.
  • 6BUI T T, PAMICHKUN M, LE C H. Structure-specified H∞ loop shaping control for balancing of bicycle robots: A particle swarm optimization approach[J]. Proceedings of the Institution of Mechanical Engineers, Part h Journal of Systems and Control Engineering, 2010, 224(7), 857-867.
  • 7YAMAKITA M, UTANO A. Automatic control of bicycles with a balancer[C]// Proceedings of the 2005 IEEE International Conference on Advanced Intelligent Mechatronics, July24-28, 2005, Monterey, California. Monterey: IEEE, 2005: 1245-1250.
  • 8YAMAKITA M, UTANO A, SEKIGUCHI K. Experimental study of automatic control of bicycle with balancer[C]// Proceedings of the 2006 IEEE /RSJ International Conference on Intelligent Robots and Systems, October9-15, 2006, Beijing, China. Beijing. IEEE, 2006: 5606-5611.
  • 9LIU Yanbin, JIA Chenhui, HAN Jianhai. Dynamics modeling of an unmanned bicycle with parallel mechanism adjusting stability[C]// Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation, August 9-12, 2009, Changchun, China. Changchun: IEEE, 2009: 1601-1605.
  • 10GETZ N H. Control of balance for a nonlinear nonholonomic nonminimum phase model of a bicycle[C]// Proceedings of American Control Conference, June 29-July 1, 1994, Baltimore, Maryland. Baltimore: IEEE, 1994: 148-151.

二级参考文献76

共引文献51

同被引文献26

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部