期刊文献+

基于中心复合设计试验的SiC单晶片超声振动加工工艺参数优化 被引量:24

Central Composite Design Test Based Process Parameters Optimizing for Compound Machining with Ultrasonic Vibration on SiC Wafer
下载PDF
导出
摘要 由于超声振动复合加工过程很难通过动力学分析得到有效的切割机理的数学模型,而试验研究不失为解决该问题的一种有效方法。采用中心复合设计(Central composite design,CCD)试验方法,设计四因素三水平的SiC单晶片超声振动复合加工试验方案;引入响应曲面法建立切向锯切力、表面粗糙度与主要工艺参数(线锯速度、工件进给速度、工件转速和超声波振幅)的二阶关系模型,通过对试验数据的多元二次拟合,分别获得切削力和表面粗糙度的二次方程表达式;进一步分析实际加工条件对工艺参数的约束,并以提高SiC单晶片表面的加工质量(即最小化加工表面粗糙度)为目标建立工艺参数优化模型;设计粒子群优化算法及其流程进行优化问题求解,通过实例验证,该算法可以快速有效地获得满足多约束的最佳工艺参数。 Since it is difficult for ultrasonic vibration compound machining to get effective cutting mechanism mathematical model through dynamic analysis, and experimental study is shown an effective method to solve this problem, following researches by means of central composite design(CCD) testing are carried out. 4-factor and 3-level SiC wafer ultrasonic vibration compound machining test scheme is designed, and then second-order relational model is established between tangential cutting force, surface roughness, and their main process parameters (wire saw speed, workpiece feed rate, rotational speed, and ultrasonic amplitude) by using response surface methodology. According to multiple quadratic fitting of testing data, quadratic equation of cutting force and surface roughness is obtained. Constrains of actual machining condition upon the parameters are analyzed further. With the goal of improving surface quality (minimized surface roughness) of SiC wafer, the parameters optimization model is established. Particle swarm optimization algorithm and its procedure are designed to solve the model. Test proves that the algorithm could achieve optimized process parameters which satisfy multiple constraints rapidly and effectively.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第7期193-198,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(51175420 51105305) 陕西省自然科学基金(2012JQ9005 2012JQT012) 陕西省教育厅科学研究计划(11JK0849 11JS074)资助项目
关键词 SiC单晶片 超声振动 工艺参数 中心复合设计 粒子群优化 SiC wafer Ultrasonic vibration Process parameters Central composite design Particle swarm optimization
  • 相关文献

参考文献8

二级参考文献76

共引文献128

同被引文献237

引证文献24

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部