期刊文献+

基于可变阈值信息检测器的设备异常度检测方法 被引量:6

Equipment Abnormal Degree Detection Approach Based on Variable Threshold Information Detector
下载PDF
导出
摘要 主要研究设备异常度的检测问题。在无故障样本的情况下,如何快速检测设备异常度已经成为状态检测的重要问题。为此,提出一种用于设备异常和异常度检测的信息匹配检测方法——可变阈值信息检测器(Variable threshold information detector,VTI-detector),在分析分散增量理论并提出数据分布相亲有限信息密度概念的基础上,计算了每个正常训练样本对自己样本(正常样本)的匹配阈值,建立了带有匹配阈值信息的矩阵,即确立VTI-detector。最后利用确立的VTI-detector,结合相亲有限信息密度的概念,提出了设备异常度的计算公式。以UCI数据库中的Iris数据集为例,将所提出的异常检测方法与其他三种常用的异常检测方法进行对比,显示VTI-detector具有比其他方法更好的检测性能。利用异常度公式在线计算轴承正常和各种故障状态的异常度,并以异常度曲线的形式进行显示,结果表明故障异常度检测效果明显,具有较好的应用前景。 The Equipment abnormal degree detection problem is studied. How to detect the abnormal degree of equipment rapidly without fault samples has become an important problem of state inspection, so a new information matching detection method called variable threshold information detector 0~TI-detector) is presented. On the basis of the disperse increment theory and proposed concept of amicable limited information density, matching threshold of each normal training sample compared to itself (normal samples) is calculated. Furthermore, vector including the information of matching threshold, namely VTI-detector, is built. At last, based on the VTI-detector and amicable limited information density concept, an abnormal degree formula is proposed. To take the Iris data sets of UCI for an example, the VTI-detector method shows a better detection performance by comparison with other three kinds of commonly used anomaly detection methods. Through the calculation of abnormal degree formula, the abnormal degree of normal and abnormal bearings can be displayed in the form of real-time curves. The result shows that this method has an obvious effect, which proves it has a good application prospect.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第8期25-31,共7页 Journal of Mechanical Engineering
基金 上海市科学技术委员会基础研究(7150080050) 高等学校博士学科点专项科研基金(20103108110006)资助项目
关键词 相亲有限信息密度 可变阈值信息检测器 异常度 Amicable limited information density Variable threshold information detector Abnormal degree
  • 相关文献

参考文献13

  • 1PAN Yuna, CHEN Jin, GUO Lei. Robust bearingperformance degradation assessment method based onimproved wavelet packet-support vector datadescriptionfJ]. Mechanical Systems and Signal Processing,2009, 23(10): 669-681.
  • 2刘树林,黄文虎,夏松波,丛蕊.活塞压缩机气阀故障检测的免疫神经网络方法研究[J].中国机械工程,2005,16(15):1384-1387. 被引量:5
  • 3刘树林,黄文虎,夏松波,陈业生.基于免疫机理的往复压缩机气阀故障检测方法[J].机械工程学报,2004,40(7):156-160. 被引量:20
  • 4MARKOU D,SINGH S. Novelty detection : Areview-part 2 : Neural network based approaches[J].Signal Processing, 2003, 83(12): 2499-2521.
  • 5DASGUPTA D,GONZALEZ F. An immunity-basedtechnique to characterize intrusions in computernetworks[J]. IEEE Translation on EvolutionaryCompution, 2002,6(6) : 281 -291.
  • 6GONZALEZ F,GOMEZ J,KANIGANTI M, et al.An evolutionary approach to generate fuzzy anomalysignatures[C]//Information Assurance Workshop,June18-20,2003, United States Military Academy, WestPoint, New York: IEEE, 2003: 18-20.
  • 7ZHOU J, DAGUPTA D. Real-valued negative selectionalgorithm with variable-sized detectorsfC]// Genetic andEvolutionary Compution(GECCO 2004), June 26-30,2004,Seattle, WA. Berlin: Springer, 2004: 287-298.
  • 8STIBOR T, MOHR P, TIMMIS J. Is negative selectionappropriate for anomaly detection?[C]// Association forComputing Machinery. Genetic and EvolutionaryComputation Conference(GECCO 2005), June 25-29,2005,Washington, D.C. New York: ACM, 2005: 321-328.
  • 9LAXTON R R. The measure of diversity[J]. TheoreticalBiology, 1978, 70(1): 51-67.
  • 10JI Z,DASGUPTA D. Augmented negative selectionalgorithm with variable-coverage detectors[C]// Congresson Evolutionary Computation, Jun 19-23,2004, Portland,OR. New York: IEEE,2004: 1081-1088.

二级参考文献15

  • 1Dasgupta D, AttohOkine N. Immunity Based Systems: a Survey. The International Conference on Systems, Man and Cybernetics, Orlando, FL, 1997.
  • 2Forrest S,Perelson A,Allen L. Self-Nonself Discrimination in a Computer. The IEEE Symposium on Research in Security and Privacy, Okaland, CA,1994.
  • 3Gonzalez F, Dasgupta D. Neuro-Immune and Self -Organizing Map Approach to Detection: a Comparison. The 1st International Conference on Artificial Immune Systems,Canterbury, UK, 2002.
  • 4Liu S L, Zhang J Z, Shi W G, et al. Negative-selection algo-rithm based approach for fault diagnosis of rotary machine-ry. In:Proceedings of American Control Conference. Anch-orage, Alaska, USA, 2002:3 955~3 960
  • 5Dasgupta D, Attohokine N. Immunity based systems:A survey. In:Proceedings of the International Conference on Systems, Man and Cybernetics. Orlando, FL, USA, 1997, 1:869~874
  • 6Forrest S, Perelson A, Allen L. Self-nonself discrimination in a computer. In:Proceedings of the IEEE Symposium on Resea-rch in Security and Privacy, Okaland, CA,USA, 1994:202~212
  • 7Gonzalez F, Dasgupta D. Neuroimmune and self-organizin-g map approach to detection:A comparison. In:Proceedin-gs of the 1st International Conference on Artificial ImmuneSystems. Canterbury, UK, 2002:9~11
  • 8Gonzalez F, Dasgupta D. An immunogenetic technique to detect anomalies in network traffic. In:Proceedings of the Genetic and Evolutionary Computation Conference. New York, USA, 2002:1 081~1 088
  • 9Castro L N, Timmis J. An artificial immune network formultimodal function optimization. In:Proceedings of IEEE International Conference on Evolutionary Computation.Honolulu, Hawaii, 2002:699~674
  • 10丁永生,任立红.人工免疫系统:理论与应用[J].模式识别与人工智能,2000,13(1):52-59. 被引量:98

共引文献23

同被引文献50

  • 1闵睿,许黎明,魏臣隽,胡德金.机械加工系统运行状态异常检测方法的研究[J].仪器仪表学报,2006,27(z3):1777-1778. 被引量:9
  • 2刘树林,黄文虎,夏松波,陈业生.基于免疫机理的往复压缩机气阀故障检测方法[J].机械工程学报,2004,40(7):156-160. 被引量:20
  • 3肖贵.机械加工系统运行状态异常检测方法及措施探讨[J].企业技术幵发,2011,30(3):83-84.
  • 4MCARTHUR S D J, B(X)TH C D,MCDONALD J R, et al.An Agent-based anomaly detection architecture for conditionmonitoring[J]. IEEE Transactions on Power Systems, 2005,20(4):1675-1682.
  • 5WANG Tianyang, CHENG Weidong, LI Jianyong, et al. A-nomaly detection for equipment condition via cross-correlationapproximate entropy [C]//Proceedings of 2011 InternationalConference on Management Science and Industrial Engineer-ing. Washington, D. C. .USA:IEEE, 2011:52-55.
  • 6GAO Yu, YANG Tianshe, XU Minqiang,et al. An unsuper-vised anomaly detection approach for spacecraft based on nor-mal behavior clustering [C]//Proceedings of the 5th Interna-tional Conference on Intelligent Computation Technology andAutomation. Washington, D. C. . USA:IEEE. 2012:478-481.
  • 7FORREST S, PERELSON A S, ALLEN L, et al. Self-nonself discrimination in a computer[C]//Research in Security and Privacy, 1994 Proceedings, Computer Society Symposium on, 1994: 202-212.
  • 8DASGUPTA D, technique to networks[J]. GONZALEZ F. An immunity-based characterize Evolutionary intrusions in computer Computation, IEEE Transactions on, 2002, 6(3): 281-291.
  • 9ZHOU Ji, DASGUPTA D. Real-valued negative selection algorithm with variable-sized detectors[C]//Genetic and Evolutionary Computation-GECCO 2004, June 26-30, 2004, Seattle, WA. Berlin: Springer, 2004: 287-298.
  • 10ZHOU Ji, DASGUPTA D. V-detector: An efficient negative selection algorithm with "probably adequate" detector coverage[J]. Information Sciences, 2009, 179(10): 1390-1406.

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部