期刊文献+

QUALITATIVE ANALYSIS OF A STOCHASTIC PREDATOR-PREY SYSTEM WITH DISEASE IN THE PREDATOR 被引量:2

QUALITATIVE ANALYSIS OF A STOCHASTIC PREDATOR-PREY SYSTEM WITH DISEASE IN THE PREDATOR
原文传递
导出
摘要 A stochastic predator prey system with disease in the predator population is proposed, the existence of global positive solution is derived. When the white noise is small, there is a stationary distribution. In addition, conditions of global stability for the determin- istic system are also established from the above result. By Lyapunov function, the long time behavior of solution around the disease-free equilibrium of deterministic system is derived. These results mean that stochastic system has the similar property with the corresponding deterministic system. When the white noise is small, however, large envi- ronmental noise makes the result different. Finally, numerical simulations are carried out to support our findings.
出处 《International Journal of Biomathematics》 2013年第1期115-127,共13页 生物数学学报(英文版)
关键词 PREDATOR-PREY stochastic perturbation stationary distribution stability extinct. 捕食系统 随机系统 疾病 Lyapunov函数 全局稳定性 长时间行为 无病平衡点 确定性系统
  • 相关文献

参考文献22

  • 1M. Bandyopadhyay and J. Chattopadhyay, Ratio-dependent predator—prey model:Effect of environmental fluctuation and stability, Nonlinearity 18 (2005) 913—936.
  • 2E. Beretta, V. Kolmanovskii and L. Shaikhet, Stability of epidemic model withtime delays influenced by stochastic perturbations, Math. Comput. Simulat. 45(1998) 269-277.
  • 3M. Carletti, On the stability properties of a stochastic model for phage-bacteriainteraction in open marine environment, Math. Biosci. 175 (2002) 117-131.
  • 4J. Chattopadhyay and O. Arino, A predator—prey model with disease in the prey,Nonlinear Anal. 36 (1999) 747-766.
  • 5T. C. Gard, Introduction to Stochastic Differential Equations (Madison Avenue 270,New York, 1988).
  • 6R. Z. Has,minskii,Stochastic Stability of Differential Equations (Sijthoff NoordhofF,Alphen aan den Rijn, Netherlands, 1980).
  • 7D. J. Higham, An algorithmic introduction to numerical simulation of stochasticdifferential equations, SIAM Rev. 43 (2001) 525-546.
  • 8L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochasticchemostat models, J. Differential Equations 217 (2005) 26-53.
  • 9C. Y. Ji and D. Q. Jiang, Dynamics of a stochastic density dependent predator-preysystem with Beddington-DeAngelis functional response, J. Math. Anal. Appl. 381(2011) 441-453.
  • 10C. Y. Ji, D. Q. Jiang and N. Z. Shi, Analysis of a predator—prey model with modifiedLeslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math.Anal. Appl. 359 (2009) 482-498.

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部