期刊文献+

生物-共沉淀法合成高性能磷酸铁锂介孔复合材料 被引量:1

The Preparation of LiFePO_4 Mesoporous Composite Material by Bio-Copreapitation Method
下载PDF
导出
摘要 本文利用生物-共沉淀新方法合成磷酸铁锂材料。以微生物为模板与金属离子和磷酸根通过矿化反应和共沉淀反应,形成沉淀物。经热处理后得到具有介孔结构的LiFePO4/C复合材料,其介孔尺寸在3~25nm之间;合成材料在0.1C时其初次放电比容量达到150mAh/g;高倍率下具有良好的循环性能,经过100次充放电循环后,其比容量保持率高达95%;充放电平台稳定,其电压稳定在3.4V左右;循环伏安测试结果显示,电池反应在3.4V左右极化现象不明显。合成材料其电化学性能的提高主要是由于其介孔结构和原位复合碳的存在,从而可显著提高锂离子的传导率和电子的电导率。本方法对制备高性能锂离子电池正极材料具有重要的应用价值。 This paper used a novel bio--coprecipitation approach to prepare LiFePO4. Microorganism was used as template, and precipitate was obtained with metal ion and phosphate after mineralization reaction and coprecipitation process. LiFePO4/C composite material was gained by heat treatment that have mesoporous structure,the mesoporous size of material is 3~25nm. The material of discharge ca- pacifies is 150 mA charging platform hg-1 at O. 1C. After 100 is very steady and volta cycles ,the capacity retention ratio is 95 %. Charging and dis- ge is about 3.4V. Cyclic Voltammetry display that the po- larization phenomenon of material is not obvious. The Lithium ion conductivity and electronic conduc tivity was enhanced by existing mesoporous structure and in situ composite carbon in material. LiFe P04/C composite material synthetized by this approach has the important application value.
出处 《山东陶瓷》 CAS 2013年第2期13-15,共3页 Shandong Ceramics
关键词 微生物 共沉淀 磷酸铁锂 介孔材料 原位复合碳 Microoranism Coprecipitation Lithium Iron Phosphate Mesoporous Material In SituComposite Carbon
  • 相关文献

参考文献11

  • 1I)ragana Jugovic, Miodrag Mitric, Maja Kuzmanovic. Prep- aration of LiFeP/Ccomposites by co - precipitation in molten stearic acid[J].Journal of Power Sources, 2011, 196:4613-4618.
  • 2Atef Y. Shenouda , Hua K. I.iu. Studies on electrochemi- cal behaviour of zinc doped LiFePO4 for lithium battery positive electrode[J]. Journal of Alloys and Compounds,2009, 477:498- 503.
  • 3Lu- Lu Zhang, Oan Liang, Alexander Jgnatov. Effect of Vanadium Incorporation on Electrochemical Performance of LiFePO for Lithium Ion Batteries[J]. The JournaI of Physical Chemistry C,2011,115: 13520- 13527.
  • 4Y. Zhou, C.D. Gu , J.P. Zhou, L.J. Cheng. Effect of carbon coating on low temperature electrochemical per- formance of LiFePO4/C by using polystyrene sphere as carbon source[J].Electrochimica Aeta, 2011,56: 5054- 5059.
  • 5C.H. Mi,Y. X. Cao,X. G. Zhang. Synthesis and charac- terization of LiFePO4/(AgZc-C) composite cathodes with nano- carbon webs [J].Powder Technology, 2008, 181 301-306.
  • 6Bing Huang , Xiaodong Zheng, Xiaoping Fan. Enhanced rate performance of nano micro structured 1.iFePO4/C by improved process for high power Li ion batteries[J].Electrochimica Acta,2011,56:4865-4868.
  • 7Hongli Zou, Guanghui Zhang, Pei Kang Shen. Intermittent microwave heating synthesizedhigh performance spherical I.iFePO4/C for Li- ion batteries[J].Materials Research Bulletin, 2010,45 : 149- 152.
  • 8Yanyi Liu , Dawei Liu , Qifeng Zhang,. Lithium iron phosphate/carbon nanocomposite film cathodes for high energy lithium ion batterie[J]. Eleetrochimica Acta, 2011, 56:2559-2565.
  • 9Feng Yu, Jingjie Zhang, Yanleng Yang. _Porous nncro- spherical aggregates of IAFePO4/C nanocomposites: A no- vel and simple template free concept and synthesis via sol gel-spray drying method[J]. Journal of Power Sources, 2010,195,6873-6878.
  • 10Fei Teng, Sunand Santhanagopalan, Ryan Lemmens. In situ growth of I.iFePO4 nanorod arrays under hydrotherm al condition[J]. Solid State Sciences,2010,1,1- 4.

同被引文献24

  • 1Nicolas Delaporte, Alexis Perea, Ruhul Amin, Karim Zaghib, Daniel Bdlanger Chemical grafted carbon-coated LiFePO4 using diazonium chemistry[C]. The Electrochemical Society, 2013, 106, 224th ECS Meeting.
  • 2Jae Kwang Kim, Gouri Cheruvally, Jae Won Choi, et al. Effect of mechanical activation process paramete on the properties of LiFePO4 cathode material[J]. J Power Source, 2007, 166(1):211.
  • 3Takahashi M, Ohtsuka H, Akuto K, et al. Confirmation of long-term cyclability and high thermal stability of LiFePO, in prismatic lithium-ion cells[J]. J Electrochem of Soc, 2005, 152(5):A899.
  • 4Padhi A K, Najundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J Electrochim Soc, 1997, 144(4): 1188-1194.
  • 5Ge Yucui, Yan Xuedong, Lin Jing, et al. An optimized Nidoped LiFePO4/C nanocomposite with excellent rate performance[J]. Electrochim Acta, 2010, 55:5886.
  • 6Liu F, Hu Z, Wen Z B, et al.LiFePOdC with high capacity synthesized by carbnthermal reduction methods[J]. Ionics, 2010, 16:311-316.
  • 7H Mich G S Cao, X B Zhao. Low-cost, one step process for synthesis of carbon-coated LiFePO4 cathode[J]. Materials Letters, 2005, 59:127-130.
  • 8Guo X F, Zhan Y H, Zhou Y H. Rapid synthesis of LiFePO4/C composite by microwave method[J]. Solid State Ionics, 2009, 180:36.
  • 9Chen J J. Whittingham M S.Hydrothermal synthesis of lithium iron phosphate[J]. Electrochem Commun, 2006, 8(5):855.
  • 10Yang S, Zhou X, Zhang J, et ah Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries[J]. J Mater Chem,2010,20:8086-8091.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部