期刊文献+

柱屈曲的精确解

Accurate Solution of Column Buckling
下载PDF
导出
摘要 在分析各种解析解的优缺点的基础上,根据广义超比微分方程,推导出质量较大时各种端部组合柱的弹性屈曲解析解。然后评估近似计算公式的准确性和数值解。 Many scholars deduced the various analytical solution of the column buckling. Based on the analysis of the advantages and disadvantages of various analytical solutions, first according to the Generalized hypergeometric differential equation, to deduced quality larger at the end of the composite column of the elastic buckling analytical solution. Then evaluate the accuracy of the approximate calculation formula and numerical solutions.
出处 《水利科技与经济》 2013年第4期39-41,共3页 Water Conservancy Science and Technology and Economy
关键词 广义超比微分方程 屈曲解析解 组合柱 generalized hypergeometric differential equation buckling analytical solution combination column
  • 相关文献

参考文献4

二级参考文献16

  • 1铁摩辛柯.弹性稳定理论[M].北京:科学出版社,1958..
  • 2武际可 黄永刚.弹性曲杆的稳定性[J].力学学报,1987,19(5):445-454.
  • 3Bazant Z P, Cedolin L. Stability of Structures Elastic, Inelastic, Fracture, and Damage Theories[ M ]. Mineola, New York: Dover Publications Inc, 2003.
  • 4Dario Aristizabal Ochoa J. Static and dynamic stability of uniform shear beam-columns under generalized boundary conditions[J]. Journal of Sound and Vibration, 2007, 307 ( 1/2 ) : 59- 88.
  • 5Pavlovic R, Kozic P, Rajkovic P, Pavlovic I. Dynamic stability of a thin-walled beam subjected to axial loads and end moments[ J]. Journal of Sound and Vibration, 2007, 301 (3/5) : 690-700.
  • 6Sampaio J H B, Hundhausen J R. A mathematical model and analytical solution for buckling of inclined beam-columns[ J]. Applied Mathematical Modelling, 1998, 22(5) : 405-421.
  • 7Zuniga A E. Analysis of a beam-column system under varying axial forces of elliptic type : the exact solution of Lame' s equation[ J]. International Journal of Solids and Structures, 2004, 41(8) : 2155-2163.
  • 8Abramowitz M, Stegun I A. Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables[M]. New York: Dover Publications Inc, 1955.
  • 9Polyanin A D, Zaitsev V F. Handbook of Exact Solutions for Ordinary Differential Equations [M]. USA: CRC Press, 1995.
  • 10Lawden D F. Elliptic Functions and Applications[ M]. New York: Springer-Verlag, 1989.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部