期刊文献+

基于多元回归法的气体浓度预测方法 被引量:4

Forecasting Gas Concentration Based on Multiple Regression
下载PDF
导出
摘要 从分析气体浓度预测的基本特性入手,设计与实现一种基于多元回归法的气体浓度预测方法。通过分析各种因素对预测结果的影响来选择预测的模型,将多元回归法应用到气体浓度的预测,以建立气体浓度预测模型,并采用图表的方式直观地显示预测结果。应用结果表明:该方法可以有效地对气体浓度进行预测,且预测精度可以满足实际需求。 By analyzing the basic characteristics of gas concentration forecasting, a gas concentration forecasting method based on multiple regression was designed and implemented. The forecasting model was selected by analyzing the effects of various factors on forecasting results. The multiple regression method was applied to forecast gas concentration, thus establishing the gas concentration forecasting model and displaying the results by charts. The application results show that the proposed method is effective for gas concentration forecasting and the accuracy can meet the actual requirements.
出处 《上海应用技术学院学报(自然科学版)》 2013年第1期75-79,共5页 Journal of Shanghai Institute of Technology: Natural Science
基金 上海市教育委员会科研创新项目资助(12YZ166) 上海应用技术学院引进人才科研启动项目(YJ2009-17)
关键词 气体浓度 多元回归法 预测模型 图表 gas concentration multiple regression forecasting model charts
  • 相关文献

参考文献8

  • 1Zhao Jinxiao,Jin Hongzhang, Yu Guanghua. Coalmine gas concentration forecasting based on chaotic theory and neural network model[C]//2010 Third International Conference on Information and Computing (ICIC 2010). Wuxi: IEEE Computer Society, 2010: 35-38.
  • 2Hou Yuhua, Cheng Jian, Li Shiyin. Forecasting coalmine gas concentration based on RBF neural network [ C ] /// International Conference on Information Acquisition( ICIA 2007). Seogwipo-si: IEEE Computer Society, 2007:192-194.
  • 3Mattick C S, Williams E, Allenby B R. Historical trends in global energy consumption [J]. IEEE Technology and Society Magazine, 2010, 29 (3) : 22-30.
  • 4Ahmed M S, Cook A R. Analysis of freeway traffic time-series data by using Box-Jenkins techniques [J]. Transportation Research Board, 1979 (722): 1-9.
  • 5孙湘海,刘潭秋.基于非线性时间序列模型的城市道路短期交通流预测研究[J].土木工程学报,2008,41(1):104-109. 被引量:12
  • 6Vlahogianni E I, Karlaftis M G, Golias J C. Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time- series of traffic volume [ J ]. Transportation Research Part C:Emerging Technologies, 2006 (14) :351-367.
  • 7白秀琴,李瑞阁.多元回归分析方法应用实证分析与比较[J].河南科学,2010,28(9):1083-1088. 被引量:10
  • 8Clark Stephen. Traffic prediction using multivariate nonparametric regression [J]. Journal of Transportation Engineering, 2003, 129 ( 2 ): 161-165.

二级参考文献16

  • 1廖利珍,廖二元,伍汉文.糖尿病病人胰岛素用量的影响因素[J].湖南医学,1995,12(2):89-90. 被引量:3
  • 2梅长林,范金城.数据分析方法[M].北京:高等教育出版社,2008:38-113.
  • 3Hoaglin C D, Mosteller F,Tukey W John. Understanding Robust And Exploratory Data Analysis[M].陈忠琏,郭德媛,译.北京:中国统计出版社,1998:1-133,221-294.
  • 4王学仁 王松桂.实用多元统计分析[M].上海:上海科学出版社,1984..
  • 5William B M. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal Stochastic Time Series Process [D]. Charlottesville: Department of Civil Engineering, University of Virginia, 1999
  • 6Williams B M, Hoel L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results [J]. Journal of Transportation Engineering, ASCE,2003, 129(6):664-672
  • 7Kamarianakis Y, Prastacos P. Forecasting traffic flow conditions in an urban network: Comparison of multivariate and univariate approaches [J]. Transportation Research Record,TRB, 2003,1857:74-84
  • 8Stathopoulos A, Karlaftis M G. A multivariate state-space approach for urban traffic flow modeling and prediction [J]. Transportation research Part C: Emerging technologies, 2003, 11(2): 121-153
  • 9Vlahogianni E I, Karlaftis M G, Golias J C. Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume [J]. Transportation Research Part C: Emerging technologies, 2006,14:351-367
  • 10Van Arem B, Kirby H R, Van Der Vlist M J M,et al. Recent advances and applications in the field of short-term traffic forecasting [J].International Journal of Forecasting, 1997, 13(1): 1-12

共引文献20

同被引文献17

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部